Determine a reasonable domain and range for the situation. Write your answer in set notation.

- 1. A professional basketball player earns \$150,000 for each game played, and there are 82 games in a season.
- 2. You eat up to 5 meals a day with an average of 844 milligrams of potassium at each meal.
- 3. The average amount of money spent on food per person at an amusement park that can accommodate 2500 people is \$5.25.

Warm Up

Find the mean of the data set. Round to the nearest tenth, if necessary.

- 1. 5, 2, 7, 4, 6, 6, 6
- 2. 11, 6, 8, 8, 11, 13, 9, 7, 11
- 3. 10, 9, 6, 10.1, 10.9, 9.6, 9.8, 16.9, 10.1
- 4. Salaries at a company: \$216,000 \$95,000 \$80,600

Cumulative Warm Up

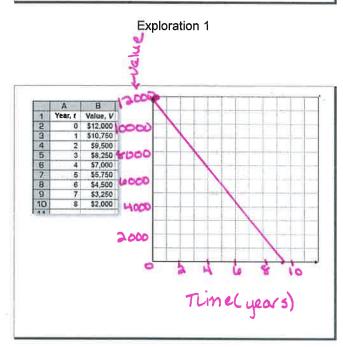
Essential Question

How can you use a linear function to model and analyze a real-life situation?

Correlation What you will learn:

- Write equations of linear functions using points and slopes
- · Find lines of best fit

mean = aver


Essential Question

Slope, Slope-intercept form, Daint Slope Scatter Plot

Work with a partner. A company purchases a copier for \$12,000. The spreadsheet shows how the copier depreciates over an 8-year period.

- a. Write a linear function to represent the value V
 of the copier as a function of the number t of
 years.
- **b.** Sketch a graph of the function. Explain why this type of depreciation is called *straight line depreciation*.
- **c.** Interpret the slope of the graph in the context of the problem.

	A	В
1	Year, r	Value, V
2	0	512,000
3	1	\$10,750
4	2	\$9,500
5	3	\$8,250
6	- 4	\$7,000
7	5	\$5,750
8	6	\$4,500
9	7	\$3,250
10	8	\$2,000

Jun 12-9:56 AM

Work with a partner. Match each description of the situation with its corresponding graph. Explain your reasoning.

- a. A person gives \$20 per week to a friend to repay a \$200 loan.
- **b.** An employee receives \$12.50 per hour plus \$2 for each unit produced per hour.
- c. A sales representative receives \$30 per day for food plus \$0.565 for each mile driven.
- d. A computer that was purchased for \$750 depreciates \$100 per year.

Exploration 2

a) V(4) = 12,000 - 1250 t

b) have students graph (next slide)

The value decreases, or depreciates, at a constant rate.

c) the value of the copier decreases \$1250 per year.

a) B : y-intercept = 200

b) C : b = 13.5

C) A: b = 30

d) D. b = 750 m= -100 G Core Concept

Writing an Equation of a Line

Given slope m and y-intercept b

Use slope-intercept form:

y = mx + b

Given slope m and a point (x_1, y_1)

Use point-slope form:

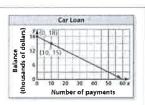
 $y - y_1 = m(x - x_1)$


Given points (x_1, y_1) and (x_2, y_2)

First use the slope formula to find m. Then use point-slope form with either

given point.

Core Concept


The graph shows the distance Asteroid 2012 DA14 travels in x seconds. Write an equation of the line and interpret the slope. The asteroid came within 17,200 miles of Earth in February, 2013. About how long does it take the asteroid to travel that distance?

3400 seconds in 1 hour

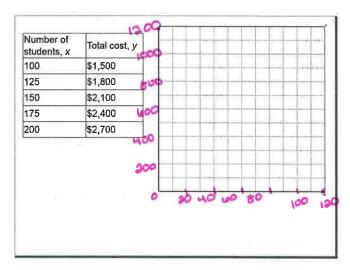
Example 1

1. The graph shows the remaining balance y on a car loan after making x monthly payments. Write an equation of the line and interpret the slope and y-intercept. What is the remaining balance after 36 payments?

Monitoring Progress 1

Sloon	formula
OTOpe	Tomara

& Student practice


Two prom venues charge a rental fee plus a fee per student. The table shows the total costs for different numbers of students at Lakeside Inn. The total cost y (in dollars) for x students at Sunview Resort is represented by the equation

v =	10x +	- 600

Which venue charges less per student? How many students must attend for the total costs to be the same?

Number of students, x	Total cost,	
100	\$1,500	
125	\$1,800	
150	\$2,100	
175	\$2,400	
200	\$2,700	

Example 2

Jun 12-9:58 AM

2. WHAT IF? Maple Ridge charges a rental fee plus a \$10 fee per student. The total cost is \$1900 for 140 students. Describe the number of students that must attend for the total cost at Maple Ridge to be less than the total costs at the other two venues. Use a graph to justify your answer.

Find slope: m = 1800-1500
135 -100
M = 300 = 12
35
$y-y_1=m(x-x_1)$
y-1500= 12(x-100)
V-1200 = 19 x-1300
y = 12x +300
10 x +600 = 12 x +300
300=2×

150 = X

Graph.	
	1.7
-	

· add another line to	
the graph and Interpret	
3	
The state of the s	

Com	Como	0-14	
(3)	Core	CUNI	epi
	Findina		
	ritialna	a rine	OI FIL

Step 1 Create a scatter plot of the data.

Step 2 Sketch the line that most closely appears to follow the trend given by the data points. There should be about as many points above the line as below it.

Step 3 Choose two points on the line and estimate the coordinates of each point. These points do not have to be original data points.

Step 4 Write an equation of the line that passes through the two points from Step 3. This equation is a model for the data.

Core Concept

The table shows the femur lengths (in centimeters) and heights (in centimeters) of several people. Do the data show a linear relationship? If so, write an equation of a line of fit and use it to estimate the height of a person whose femur is 35 centimeters long.

Femur length, x	Height, y	
40	170	
45	183	
32	151	
50	195	
37	162	
41	174	
30	141	
34	151	
47	185	
45	182	

(Insert Slide w graph)

Example 3

Use the *linear regression* feature on a graphing calculator to find an equation of the line of best fit for the data in Example 3. Estimate the height of a person whose femur is 35 centimeters long. Compare this height to your estimate in Example 3.

line of fit: a	line tha	+
models data	in a	
Scatter plot		
·		

·uh	(at)	rype	of
	COC	relat	of in?
			itive
		· Noc	ative
		·NO	correlation

can use c	lesmos	to
do - but	2/50	Calculate
by hand	١.	
9		
:		

3. The table	shows the humerus lengths (in cen	timeters) and height (in
centimeters) of several females.	

Humerus length, x	33	25	22	30	28	32	26	27
Height, <i>y</i>	166	142	130	154	152	159	141	145

- a. Do the data show a linear relationship? If so, write an equation of a line of fit and use it to estimate the height of a female whose humerus is 40 centimeters long.
- **b.** Use the *linear regression* feature on a graphing calculator to find an equation of the line of best fit for the data. Estimate the height of a female whose humerus is 40 centimeters long. Compare this height to your estimate in part (a).

Monitoring Progress 3

- I Used to Think ... But Now I Know: Take time for students to reflect on their current understanding of fitting a line to data and performing linear regression.
- Exit Ticket: Write the equation of a line that passes through (2, 1) and (10, 5).

Closure

* Student	practice	
		
		·
<i>3</i>		
-		
·		
·		
-		
3		
=		
16		
	F 7 11	for a Tr