4 =	- 2/3	×	+	213
y =	3	_	22	

Use a graphing calculator to find the solution to the system of equations, if possible.

1.
$$2x + 3y = 2$$
 $3x - 2$ $2x + 3y = 6$ $3x - 5y = 22$ $2x + y = -2$

3.
$$2x - y = 1$$

$$6x - 3y = 12$$

 $4.2x + 3y = \frac{3}{6} + \frac{3}{3}$

4.
$$2x + 3y = 6$$

5.
$$3x + 2y = -3$$

6.
$$2x - 5y = 8$$

$$6x + 9y = 18$$

$$x - 3y = 6$$

$$-x + 3y = -5$$

Cumulative Warm Up

Essential Question

How can you use the graph of a quadratic equation to determine the number of real solutions of the equation?

alculator	0 '	- J
,		

Use desmos and graphing

*	discuss	other	بيعيا	5
	40			

Skip for warm up

What i	IOI	llia	lea	m:
	100			

¥	Solve	quadratic	equation
- 5		raphing	7

Essential Question

Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Determine the number of *x*-intercepts of the graph.

$$\mathbf{a.}\;f\left(x\right) =x^{2}-2x$$

b.
$$f(x) = x^2 - 2x + 1$$
 c. $f(x) = x^2 - 2x + 2$

c.
$$f(x) = x^2 - 2x + 2$$

$$d. f(x) = -x^2 + 2x$$

+ 2x e.
$$f(x) = -x^2 + 2x - 1$$
 f. $f(x) = -x^2 + 2x - 2$

Exploration 1

Work with a partner. Use the results of Exploration 1 to find the real solutions (if any) of each quadratic equation.

a.
$$x^2 - 2x = 0$$

b.
$$x^2 - 2x + 1 = 0$$

c.
$$x^2 - 2x + 2 = 0$$

d.
$$-x^2 + 2x = 0$$

e.
$$-x^2 + 2x - 1 = 0$$

$$\mathbf{f.} - x^2 + 2x - 2 = 0$$

Exploration 2

graphing

Solving Quadrati	c Equations
By graphing	Find the x-intercepts of the related function $y = ax^2 + hx + c$.
Using square roots	Write the equation in the form $u^2 = d$, where u is an algebraic expression, and solve by taking the square root of each side.
By factoring	Write the polynomial equation $ax^2 + bx + c = 0$ in factored form and solve using the Zero-Product Property.

Core Concept

Standard form: ax + bx + c
root of an equation: a solution of the equation

Solve each equation by graphing.

a.
$$x^2 - x - 6 = 0$$

b. $-2x^2 - 2 = 4x$
 $-3x^2 - 4x - 3 = 0$
 $-1(3x^2 + 4x + 3 = 0)$
 $-2(x+3)(x-3)$
 $-3(x+1)(x+1) = 0$
 $-3(x+1)(x+1) = 0$
 $-3(x+1)(x+1) = 0$
 $-3(x+1)(x+1) = 0$
 $-3(x+1)(x+1) = 0$

Example 1

6x - 20

Monitoring Progress 1-3

you can use factoring to
you can use factoring to solve a quadratic.
V
* make oure you are in
* make oure you are in
- leading coefficient
should be positive
- factor out a GCF if
possible
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
* set equal to zero * solve for x.

anowers: 1.) X=6 and x=2	* Studen	t practice
	anowers	š:
	1.)	x=6 and x=2
a.) X=1.5	<i>a.</i>)	X = 1.5
3.) no real solutions	3.)	no real solutions

Solve the equation using square roots.

4.
$$\frac{2}{3}x^2 + 14 = 20$$
 5. $-2x^2 + 1 = -6$

$$5. -2x^2 + 1 = -6$$

6.
$$2(x-4)^2 = -5$$

Monitoring Progress 4-6	Monitoring	Progress	4-6
-------------------------	------------	----------	-----

:	
X= ± 3	
X = ±	114
	: X=±3 X=±

* Student practice

G Core Concept

Zero-Product Property

Words If the product of two expressions is zero, then one or both of the expressions equal zero.

Algebra If A and B are expressions and AB = 0, then A = 0 or B = 0.

6) no real solution

Core Concept

Solve $x^2 - 4x = 45$ by factoring.	45		
X2-4X-45=0	1 -45		
(x-9\x+5)=0	3-15		
X-9=0 X+5=0	5-9		
x=9 x=-5			

Example 3

Find the zeros of
$$f(x) = 2x^2 - 11x + 12$$
.

 $0 = (2x^2 - 8x)(-3x + 13)$
 $0 = 2x(x-4) - 3(x-4)$
 $0 = (x-4)(3x-3)$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 = 3 - 8$
 $1 =$

Example 4

Solve the equation by factoring.

7.
$$x^2 + 12x + 35 = 0$$

8.
$$3x^2 - 5x = 2$$

Find the zero(s) of the function.

9.
$$f(x) = x^2 - 8x$$

10.
$$f(x) = 4x^2 + 28x + 49$$

Monitoring Progress 7-10

A monthly teen magazine has 48,000 subscribers when it charges \$20 per annual subscription. For each \$1 increase in price, the magazine loses about 2000 subscribers. How much should the magazine charge to maximize annual revenue? What is the maximum annual revenue?

$$R(x) = (48000 - 2000 \times)(20 + x)$$

 $R(x) = -2000(x-24)(x+20)$

fix	=	4	
		J	

Zeros of function =

X-Intercepts are when the graph crosses the x-axis

fcx = y = 0

* Student practice

answers:

7.) X = -5 and X = -7

8) x= 2 and x= - 1/3

9) X=8 and X=0

10) X = -3.5 or -31/2

44 14514717071	
11. WHAT IF? The magazine initially charges \$21 per annual	
subscription. How much should the magazine charge to maximize	
annual revenue? What is the maximum annual revenue?	
Monitoring Progress 11	
g., 7-3, 5-5	
For a science competition, students must design a container that	
prevents an egg from breaking when dropped from a height of 50 feet.	
a. Write a function that gives the height h (in feet) of the container after	
t seconds. How long does the container take to hit the ground?	
b. Find and interpret $h(1) - h(1.5)$.	
Example 6	
	1
12. WHAT IF? The egg container is dropped from a height of 80 feet.	
How does this change your answers in parts (a) and (b)?	
	,
	1
	##
	l .

Exit Ticket: Explain what method you would use to solve each of the following quadratic equations.		
a. $x^2 - 84 = 0$		
b. $x^2 + 5x + 4 = 0$		
c. $\frac{1}{5}x^2 - 2x + 6 = 0$		
5	,	
	,	
	,	
21		
Closure		