Name_____

College Prep Mid-Term Review

Define the following terms, and provide an example:

Domain:

Range:

Slope Intercept form:

Point Slope Form:

Standard Form of a linear equation:

Function:

Rate:

Parallel lines:

Perpendicular:

Reciprocal:

Scatter plot:

Correlation:

Line of fit:

Sequence:

Term:

Arithmetic sequence:

Common difference:

Function notation:

Piecewise function:

Step function:

Absolute value function:

Vertex form:

Vertex:

State the domain and the range of the function.

1.
$$f(x) = \begin{cases} -\frac{3}{4}x - 1, & \text{if } x < 4 \\ 3, & \text{if } x \ge 5 \end{cases}$$

$$\mathbf{2.} \quad g(x) = \begin{cases} 4 - x, \text{ if } 1 < x < 4 \\ -2, \text{ if } -1 \le x < 1 \\ 3, \text{ if } x < -1 \end{cases}$$

3. Graph the function.

$$h(x) = \begin{cases} \frac{2}{3}x - 5, & \text{if } x > 0\\ -\frac{1}{2}x - 3, & \text{if } x \le 0 \end{cases}$$

Write the slope-intercept form of the equation with the given characteristics.

4. slope $=\frac{2}{5}$; passes through (-3, 1)

- **5.** passes through (3, 5) and (-1, 5)
- 6. parallel to the line 2x y = 7; passes through (-5, -3)
- 7. perpendicular to the line $y = -\frac{3}{2}x 7$; passes through (-3, -4)
- 8. perpendicular to the line 2x 5 = -11; passes through (7, 5)
- **9.** slope $=\frac{1}{2}$; *x*-intercept = 3
- **10.** slope = -3; passes through (4, -7)
- **11.** parallel to the line 2x 5y = -20; passes through (7, 6)

12. perpendicular to the line y = 3x + 8; passes through (-4, 1)

Determine if the sequence is arithmetic. If so, find the common difference.

13. -3, -1, 3, 5, ... **14.** -1, -7, -13, -19, ...

15.
$$-\frac{1}{6}, \frac{1}{2}, \frac{1}{2}, \frac{5}{6}, \cdots$$
 16. -1.2, -0.1, 0.8, 1.7, ...

17. Line *m* represents a translation of line ℓ 2 units up and 3 units right. Write an equation that represents the equation of line ℓ .

18. The table shows the number of women (in millions) in the U.S. work force at various times during the past century.

Year, <i>x</i>	1900	1920	1930	1950	1970	1990
Number, y	5	8	10	16	31	57

a. Make a scatter plot of the data. Describe the correlation.

b. Use a graphing calculator to find an equation of the line of best fit.

Determine if the given lines are parallel, perpendicular, or neither.

19.
$$2x - 3y = 9$$
20. $x = 5$
 $4x - 5y = 15$
 $2x - 3 = 15$

21.	2 - x = 3y	22.	$y + x = \frac{1}{2}x + 1$
	2y + 10 = 6x		2x - y = 3

Tell whether a correlation is likely in the situation. Explain your reasoning.

23. The amount of gas in a car's tank and the number of miles driven

24. The height of a person and the length of the person's hair

Chapter 5

Define the following terms:

Systems of Linear Equations:

Solution of a system of linear equations:

Coefficient:

Parallel:

Perpendicular:

Linear inequality in two variables:

Solution of a linear inequality in two variables:

Graph of a linear inequality:

Half-planes:

Ordered pair:

System of linear inequalities:

Solution of a system of linear inequalities:

Graph of a system of linear inequalities:

Solve the system of linear equations using any method.

1. $x - 5y = -30$	2. $x + 2y = -3$	3. $-5x - 4y = -15$
3x + 5y = 10	-5x + 2y = 51	10x + 8y = 30

4. $y = 2x + 3$	5. $y = -5x + 6$	6. $x = -y - 1$
-4x + 2y = 8	2x + y = 6	-5x + 2y = -65

Graph the inequality in a coordinate plane.

7. y > 0

Graph the system of linear inequalities.

- **9.** $3x + 2y \ge -2$
 - $x + 2y \le 2$

10. 2	$\frac{1}{4x}$ -	3y ≥ ⊦ 6y	≥ 6 ≤ -	-18			
					У		
				-2-			

11. Write an expression that you can substitute for x in the top equation of the system below to solve the system by substitution.

5x - 2y = 8x - y = 1

12. You have \$8.80 in pennies and nickels. You have twice as many nickels as pennies. Write a system of linear equations that models the situation. How many of each type of coin do you have?

Compare the slopes and *y*-intercepts of the graphs of the equations in the linear system to determine whether the system has one solution, no solution, or infinitely many solutions. Explain.

13. $x = -3y + 28$	14. $2x + 3y = 11$	15. $x + 2y = 3$	
x + 4y = 36	-4x - 6y = -22	-2x - 4y = -20	

- **16.** You make \$5 an hour in tips working at a video store and \$7 an hour in tips working at a landscaping company. You must work at least 4 hours per week at the video store, and the total number of hours you work at both jobs in a week cannot be greater than 15.
 - **a.** Write a system of linear inequalities to model the number of hours that you could work at each location in a week.

b. Graph the system of linear inequalities.

c. Write an equation that models the total tips you receive from the two jobs.

d. Identify and interpret a solution of the system.

Write a system of linear inequalities represented by the graph.

Solve the equation by graphing. Check your solutions.

19. $2x - 3 = x + 2$	20. $ x-1 = 2x-5 $	21. $ -x = 2x - 3 $
-----------------------------	-----------------------------	------------------------------

Chapter 6

Define the following:

Power:

Exponent:

Base:

Scientific notation:

Square Root:

<u>n th root of a:</u>

Radical:

Index of a radical:

Simplify the expression. Write your answer using only positive exponents.

1.
$$\frac{12x^{-5}y^3}{3^{-2}x^{-2}y^{-4}}$$
 2. $(5x^4y^0)^{-3}$ **3.** $\left(-\frac{1}{2a^{-2}}\right)^{-3}$

Rewrite the expression as a power of a product.

4.
$$9x^6y^8$$
 5. $64x^9y^9$

Evaluate the expression.

6.
$$(27)^{-2/3}$$
 7. $-\sqrt[3]{-125}$ **8.** $(8)^{2/3} \bullet (27)^{-1/3}$