\qquad

3.4 Practice A

In Exercises 1-8, solve the equation using the Quadratic Formula. Use a graphing calculator to check your solution(s).

1. $x^{2}+9 x+4=0$
2. $2 x^{2}-2 x-4=0$
3. $2 x^{2}+12 x+18=0$
4. $-4 x^{2}=3 x-1$
5. $-3 x^{2}+5 x=4$
6. $x^{2}+144=24 x$
7. $-7 x=2 x^{2}+9$
8. $6 x^{2}=4 x-9$

In Exercises 9-12, find the discriminant of the quadratic equation and describe the number and type of solutions of the equation.
9. $x^{2}-4 x+1=0$
10. $x^{2}+10 x+25=0$
11. $3 t^{2}-3 t+18=0$
12. $-x^{2}-2 x+3=0$
13. What are the complex solutions of the equation $2 x^{2}-32 x+178=0$?
A. $8+20 i, 8-20 i$
B. $8+5 i, 8-5 i$
C. $32+5 i, 32-5 i$
D. $32+20 i, 32-20 i$

In Exercises 14 and 15, find a possible pair of integer values for a and co that the quadratic equation has the given solution(s). Then write the equation.
14. $a x^{2}+8 x+c=0$; one real solution
15. $a x^{2}-5 x+c=0$; two imaginary solutions

In Exercises 16 and 17, use the Quadratic Formula to write a quadratic equation that has the given solutions.
16. $x=\frac{9 \pm \sqrt{-79}}{8}$
17. $x=\frac{-11 \pm \sqrt{97}}{-6}$

In Exercises 18-21, solve the quadratic equation using the Quadratic Formula. Then solve the equation using another method. Which method do you prefer? Explain.
18. $9 x^{2}+4=12 x$
19. $4 x^{2}-13 x+3=0$
20. $x^{2}-12 x+9=0$
21. $x^{2}-4 x=12$
22. Suppose a quadratic equation has the form $x^{2}+x+c=0$. Show that the constant c must be less than $\frac{1}{4}$ in order for the equation to have two real solutions.

