3.4 Practice A

In Exercises 1–8, solve the equation using the Quadratic Formula. Use a graphing calculator to check your solution(s).

1. $x^2 + 9x + 4 = 0$ 2. $2x^2 - 2x - 4 = 0$ 3. $2x^2 + 12x + 18 = 0$ 4. $-4x^2 = 3x - 1$ 5. $-3x^2 + 5x = 4$ 6. $x^2 + 144 = 24x$ 7. $-7x = 2x^2 + 9$ 8. $6x^2 = 4x - 9$

In Exercises 9–12, find the discriminant of the quadratic equation and describe the number and type of solutions of the equation.

- **9.** $x^2 4x + 1 = 0$ **10.** $x^2 + 10x + 25 = 0$ **11.** $3t^2 - 3t + 18 = 0$ **12.** $-x^2 - 2x + 3 = 0$
- **13.** What are the complex solutions of the equation $2x^2 32x + 178 = 0$?
 - A. 8 + 20i, 8 20iB. 8 + 5i, 8 5iC. 32 + 5i, 32 5iD. 32 + 20i, 32 20i

In Exercises 14 and 15, find a possible pair of integer values for *a* and *c* so that the quadratic equation has the given solution(s). Then write the equation.

- **14.** $ax^2 + 8x + c = 0$; one real solution
- **15.** $ax^2 5x + c = 0$; two imaginary solutions

In Exercises 16 and 17, use the Quadratic Formula to write a quadratic equation that has the given solutions.

16.
$$x = \frac{9 \pm \sqrt{-79}}{8}$$
 17. $x = \frac{-11 \pm \sqrt{97}}{-6}$

In Exercises 18–21, solve the quadratic equation using the Quadratic Formula. Then solve the equation using another method. Which method do you prefer? Explain.

18. $9x^2 + 4 = 12x$ **19.** $4x^2 - 13x + 3 = 0$ **20.** $x^2 - 12x + 9 = 0$ **21.** $x^2 - 4x = 12$

22. Suppose a quadratic equation has the form $x^2 + x + c = 0$. Show that the constant *c* must be less than $\frac{1}{4}$ in order for the equation to have two real solutions.