Multiply.	
1. (3x - 2)(2x - 4)	2. $(5x + 2)(4x + 1)$
6x2-12x-4x+8	
6x2-16x+8	90x3+13x+3
3. $(4x + y)(2x - 3y)$	4. 3a(4a + 1)
8x2 - 12xy +2xy -	342 1302 +30
843-10x4-343	7
5. $(4x + 1)(5x - 2)$	6. (5y + 4)(3y + 2)
2012-84154-2	1542 Hoy tlayte
20x2-3x-2	1593 + 334 +8

Warm Up

Write a function g whose graph represents the indicated transformation of the graph f.

1. f(x) = x + 6; translation 3 units right

$$g(x) = f(x-3)$$
 $g(x) = (x-3)$

2. f(x) = x - 3; translation 1 unit left

$$g(x) = f(x+1)$$

$$g(x) = (x+1) - 3$$

$$g(x) = x - 2$$
3. $f(x) = |5x-2| - 3$; translation 1 unit down

$$g(x) = f(x) - 1$$

 $g(x) = |5x - 2| - 3 - 1$
 $g(x) = |5x - 2| - 4$

Cumulative Warm Up

Essential Question

How do the constants a, h, and k affect the graph of the quadratic function $g(x) = a(x - h)^2 + k$?

* Student may method to solve	use any
· Foil	
'double dish	ributive
· area mod	lel
* have students as a unrmi	

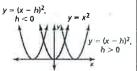
neview of transformations

Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Then use a graphing calculator to verify that your answer is correct.

a.
$$g(x) = -(x - 2)^2$$

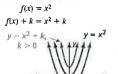
b.
$$g(x) = (x-2)^2 + 2$$
 c. $g(x) = -(x+2)^2 - 2$

d.
$$g(x) = 0.5(x-2)^2 - 2$$



Exploration 1

G Core Concept


| Horizontal Translations

f(x) = x²f(x - h) = (x - h)²

- shifts left when h < 0
- shifts right when h > 0

Vertical Translations

- $y = x^2 + k,$ k < 0• shifts down when k < 0
- shifts up when k > 0

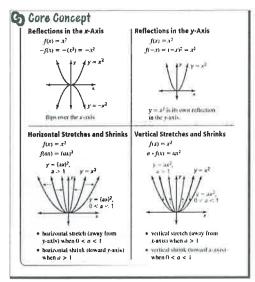
Core Concept

Describe the transformation of $f(x) = x^2$ represented by $g(x) = (x + 4)^2 - 1$. Then graph each function.

1 K=-1

4 units left

I unit down


C. A

d. F

e. C

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function. 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 1. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 1. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 1. $g(x) = (x-3)^2$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 2. $g(x) = (x-2)^2 - 2$ 3. $g(x) = (x+5)^2 + 1$ 2. $g(x) = (x+5)^2 + 1$ 2. $g(x) = (x+5)^2 + 1$ 2. $g(x) = (x+5)^2 + 1$ 3. $g(x) = (x+5)^2 + 1$ 3. $g(x) = (x+5)^2 + 1$ 3. $g(x) = (x+5)^2 + 1$ 4. $g(x) = (x+5)^2 + 1$ 5. $g(x) = (x+5)^2 + 1$ 6. $g(x) = (x+5)^2 + 1$ 6. $g(x) = (x+5)^2 + 1$ 7. $g(x) = (x+5)^2 + 1$ 8. $g(x) = (x+5)^2 + 1$ 9. $g(x) = (x+5)^2 + 1$

Monitoring Progress 1-3

Core Concept

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

a.
$$g(x) = -\frac{1}{2}x^2$$

b. $g(x) = (2x)^2 + 1$

		represented by g. Then	
$4. g(x) = \left(\frac{1}{3}x\right)^2$	5. $g(x) = 3(x - 1)^2$	6. $g(x) = -(x + 3)^2 + 2$	

Monitoring Progress 4-6

Let the graph of g be a vertical stretch by a factor of 2 and a reflection in the x-axis, followed by a translation 3 units down of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.

Example 3

Let the graph of g be a translation 3 units right and 2 units up, followed by a reflection in the y-axis of the graph of $f(x) = x^2 - 5x$. Write a rule for g.

The height h (in feet) of water spraying from a fire hose can be modeled by $h(x) = -0.03x^2 + x + 25$, where x is the horizontal distance (in feet) from the fire truck. The crew raises the ladder so that the water hits the ground 10 feet farther from the fire truck. Write	
a function that models the new path of the water.	
	,
	-
	J
Example 5	
7. Let the graph of g be a vertical shrink by a factor of $\frac{1}{2}$ followed by a	Ī
translation 2 units up of the graph of $f(x) = x^2$. Write a rule for g and	
identify the vertex.	-
AA alkadaa Daawaa 7	
Monitoring Progress 7	
	_
8. Let the graph of g be a translation 4 units left followed by a horizontal	=======================================
shrink by a factor of $\frac{1}{3}$ of the graph of $f(x) = x^2 + x$. Write a rule for g	
	. .
	-

9. WHAT IF? In Example 5, the water hits the ground 10 feet closer to the fire truck after lowering the ladder. Write a function that models the new path of the water.	
Monitoring Progress 9	
	1
I Used to Think But Now I Know: Take time for students to reflect on their current understanding of transformations.	
	×
Closure	