Name

Converting Measures

The U.S. customary system is a system of measurement that contains units for length, capacity, and weight. The metric system is a decimal system of measurement, based on powers of 10 , that contains units for length, capacity, and mass. To convert from one unit of measure to another, multiply by one or more conversion factors. A conversion factor is a rate that equals 1 and can be written using fraction notation. A list of equivalent measures is located in the back of your textbook. There are two different conversion factors for each statement of equivalent measures.

Statement of Equivalent Measures	Conversion Factors
$1 \mathrm{in} .=2.54 \mathrm{~cm}$	$\frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}$ and $\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}$

Example 1 Convert 24 quarts to gallons.

Example 2 Convert 6.5 meters to feet.

$$
\begin{array}{ll}
24 \mathrm{qt} \cdot \frac{1 \mathrm{gal}}{4 \mathrm{~g}^{\prime}}=\frac{24 \cdot 1 \mathrm{gal}}{4}=6 \mathrm{gal} & 6.5 \mathrm{~m} \cdot \frac{3.28 \mathrm{ft}}{1 \mathrm{mt}}=6.5 \cdot 3.28 \mathrm{ft} \approx 21.32 \mathrm{ft} \\
\text { So, } 24 \text { quarts is } 6 \text { gallons. } & \text { So, } 6.5 \text { meters is about } 21.32 \text { feet. }
\end{array}
$$

Example 3 A sports car reaches a maximum speed of 210 miles per hour. What is the speed in feet per second?

$$
\frac{210 \mathrm{mi} \mathrm{\prime}}{1 \not K}\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mí}}\right)\left(\frac{1 \mathrm{~K}}{3600 \mathrm{sec}}\right)=\frac{210 \cdot 5280 \mathrm{ft}}{3600 \mathrm{sec}}=\frac{1,108,800 \mathrm{ft}}{3600 \mathrm{sec}}=\frac{308 \mathrm{ft}}{1 \mathrm{sec}}
$$

The speed is 308 feet per second.

Practice

Copy and complete the statement. Round to the nearest hundredth, if necessary.

1. $36 \mathrm{oz}=\square \mathrm{lb}$
2. $3400 \mathrm{~mL}=$
L
3. $18 \mathrm{pt}=\square \mathrm{c}$
4. $7 \mathrm{~kg}=\square \mathrm{g}$
5. $246 \mathrm{ft}=\square \mathrm{yd}$
6. $65 \mathrm{~cm}=\square \mathrm{mm}$
7. $8.5 \mathrm{mi}=\square \mathrm{ft}$
8. $8 \mathrm{~h}=\square \mathrm{sec}$
9. $20 \mathrm{~cm} \approx \quad$ in.
10. $150 \mathrm{lb} \approx \square \mathrm{kg}$
11. $2.5 \mathrm{~km} \approx \square \mathrm{mi}$
12. $4 \mathrm{gal} \approx \quad \mathrm{L}$
13. $6 \frac{1}{2} \mathrm{ft} \approx \square \mathrm{m}$
14. $12 \mathrm{~L} \approx \square \mathrm{qt}$
15. $2500 \mathrm{~mL} \approx \mathrm{c}$
16. $24 \mathrm{oz} \approx \mathrm{g}$
17. ENGINE COOLANT An automobile engine holds 5.8 liters of coolant. You have 2 gallons of coolant. Do you have enough coolant to fill the engine? Explain.
18. HUMMINGBIRD A hummingbird's heart rate is about 1250 beats per minute. What is the heart rate in beats per second?
19. EROSION A shoreline is eroding at a rate of 6.8 meters per year. What is the erosion rate in feet per week?
20. SWIMMING POOL A swimming pool is draining at a rate of 10 fluid ounces per second. What is the drainage rate in gallons per hour?
