5. $\sum_{n=1}^{200} 5 - \frac{1}{2}n$

Find the sum.

1. $\sum_{n=1}^{3} 2^{n+1}$ 2. $\sum_{n=1}^{3} 2n-1$ 3. $\sum_{n=1}^{4} 4\left(\frac{2}{3}\right)^{n-1}$ 4. $\sum_{n=1}^{17} -2(3)^{n-1}$

Warm Up

Graph the function. State the domain and range. 1. $f(x) = \frac{1}{x-1} + 3$ 2. $f(x) = \frac{-2}{x+3}$

3. $f(x) = \frac{3}{x-2} + 4$ 4. $f(x) = \frac{x}{x+1}$

5. $f(x) = \frac{3x-1}{2x-1}$ 6. $f(x) = \frac{-2x+5}{x-3}$

Cumulative Warm Up

Essential Question

How can you find the sum of an infinite geometric series?

Essential Question

Work with a partner, Enter each geometric series in a spreadsheet. Then use the spreadsheet to determine whether the infinite geometric series has a linite sum. If it does, find the sum. Explain your reasoning, (The figure shows a partially completed spreadsheet for part (a).)

a. $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\dots$ a. $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\dots$ b. $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\dots$ b. $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\dots$ c. $1+\frac{3}{2}+\frac{9}{4}+\frac{27}{8}+\frac{81}{16}+\dots$

Exploration 1 a-c

d.
$$1 + \frac{5}{4} + \frac{25}{16} + \frac{125}{64} + \frac{625}{256} + \dots$$

e. $1 + \frac{4}{5} + \frac{16}{25} + \frac{64}{125} + \frac{256}{625} + \dots$
f. $1 + \frac{9}{10} + \frac{81}{100} + \frac{729}{1000} + \frac{6561}{10,000} + \dots$

Exploration 1 d-f

Work with a partner. Look back at the infinite geometric series in Exploration 1. Write a conjecture about how you can determine whether the infinite geometric series

$$a_1 + a_1 r + a_1 r^2 + a_1 r^3 + \dots$$

has a finite sum

Work with a partner. In Lesson 8.3, you learned that the sum of the first n terms of a geometric series with first term a_1 and common ratio $r \neq 1$ is

$$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$$

When an infinite geometric series has a finite sum, what happens to r^n as n increases? Explain your reasoning. Write a formula to find the sum of an infinite geometric series. Then verify your formula by checking the sums you obtained in Exploration 1.

Exploration 3

Consider the infinite geometric series

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots$$

Find and graph the partial sums S_n for n = 1, 2, 3, 4, and 5. Then describe what happens to S_n as n increases.

Example 1

The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term a_1 and common ratio r is given by

$$S = \frac{a_1}{1-r}$$

provided |r| < 1. If $|r| \ge 1$, then the series has no sum.

Find the sum of each infinite geometric series.

a.
$$\sum_{i=0}^{\infty} 3(0.7)^{i-1}$$

c.
$$1 - \frac{3}{4} + \frac{9}{16} - \frac{27}{64} + \dots$$

Example 2

1. Consider the infinite geometric series

$$\frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \frac{16}{1625} + \frac{32}{3125} + \dots$$

Find and graph the partial sums S_n for n=1, 2, 3, 4, and 5. Then describe what happens to S_n as n increases.

Find the sum of the infinite geometric series, if it exists. 2. $\sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)^{n-1}$ 3. $\sum_{n=1}^{\infty} 3\left(\frac{5}{4}\right)^{n-1}$

$$2. \sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)$$

3.
$$\sum_{n=1}^{\infty} 3 \left(\frac{5}{4} \right)^{n-1}$$

4.
$$3 + \frac{3}{4} + \frac{3}{16} + \frac{3}{64} + \dots$$

Monitoring Progress 1-4

A pendulum that is released to swing freely travels 18 inches on the first swing. On each successive swing, the pendulum travels 80% of the distance of the previous swing. What is the total distance the pendulum swings?

	1
Write 0,242424 as a fraction in simplest form.	•
	*
	2
	
Example 4	
p	2
5. WHAT IF? In Example 3, suppose the pendulum travels 10 inches on its first swing. What is the total distance the pendulum swings?	
The motorning. What is the total distance the periodicin stringer.	
Write the repeating decimal as a fraction in simplest form.	
6. 0.555 8. 0.131313 8. 0.131313 9.	
Monitoring Progress 5-8	
•	
	l
Exit Ticket: Determine the sum of the distances traveled by person B	
in the Motivate activity.	
	(
	·
	·

Closure