+ use a Coordinate grid

Notes Section 5.5

Graph the	equation	in a	coordinate	plane
	•		4	•

$$1. y = 4x$$

2.
$$y = \frac{4}{3}x - 2$$

3.
$$x + y = 5$$

4.
$$y = 3$$

5.
$$2x + 5y = 11$$

6.
$$y = -2x - 2$$

Warm Up

Write the next three terms of the arithmetic sequence.

1. First term: 3

Common difference: 12

2. First term: 19

Common difference: -7

Cumulative Warm Up

Essential Question

How can you use a system of linear equations to solve an equation with variables on both sides?

	3		
·Solve	linear	ea	uan
by	graphi		
· 50\ve	absol	ute	valu
0044	An America	h	

what you will learn:

Skip Sequences

·Use	linear	equ	uations	to
			proble	

Essential Question

Work with a partner. Solve $2x - 1 = -\frac{1}{2}x + 4$ by graphing.

- a. Use the left side to write a linear equation. Then use the right side to write another linear equation.
- b. Graph the two linear equations from part (a). Find the x-value of the point of intersection. Check that the x-value is the solution of $2x - 1 = -\frac{1}{2}x + 4$.

c. Explain why this "graphical method" works.

* Student practice

Exploration 1

Work with a partner. Solve each equation using two methods.

Method 1 Use an algebraic method.

Method 2 Use a graphical method.

Is the solution the same using both methods?

a.
$$\frac{1}{2}x + 4 = -\frac{1}{4}x + 1$$

a.
$$\frac{1}{2}x + 4 = -\frac{1}{4}x + 1$$
 b. $\frac{2}{3}x + 4 = \frac{1}{3}x + 3$

c.
$$-\frac{2}{3}x - 1 = \frac{1}{3}x - 4$$
 d. $\frac{4}{5}x + \frac{7}{5} = 3x - 3$

d.
$$\frac{4}{5}x + \frac{7}{5} = 3x - 3$$

$$e. -x + 2.5 = 2x - 0.5$$

$$f_x - 3x + 1.5 = x + 1.5$$

Exploration 2

Core Concept

Solving Linear Equations by Graphing

Step 1 To solve the equation ax + b = cx + d, write two linear equations.

$$(x + b = cx + d)$$

$$y = and$$

$$y = cx + d$$

$$y = cx + d$$

Step 2 Graph the system of linear equations. The x-value of the solution of the system of linear equations is the solution of the equation as + b = cx + d

Solve -x + '	1 =	2x -	5 by	graphing.	Check you	r solution.

_				
Exa	m	a	le	1

1.
$$\frac{1}{2}x - 3 = 2x$$

2.
$$-4 + 9x = -3x + 2$$

Monitoring Progress 1-2

Solve |x+1|=|2x-4| by graphing. Check your solutions. |X+1|=|2x-4| |Y=|x+1| |Y=|x+1| |X+1|=-|(3x-4|) |Y=|x+1| |Y=|x+1| |Y=|x+1| |Y=|x+1| |Y=|x+1| |Y=|x+1|

Example 2

# 0	raa	n	ooth	1	in	25
	= = 1		1			

* Intersecting	point	is
the solution	1	

*	Romember	• 4	OU	aro.
	Solving	for	X	

# Student	practice		

axtb = (cx +d) has a related equations

axtb = cx +d

ax +b = - (cx+d)

Graph first two equations on one grid Graph and two equations

on a 2nd grid

Solve the equation by graphing. Check your solutions.

3.
$$|2x+2|=|x-2|$$

$$A \times + 2 = X - 2$$

 $A \times + 2 = -(X - 2)$ or
 $A \cdot |x - 6| = |-x + 4|$
 $A \times + 2 = -X + 2$

Monitoring Progress 3-4

Your family needs to rent a car for a week while on vacation. Company A charges \$3.25 per mile plus a fl at fee of \$125 per week. Company B charges \$3 per mile plus a flat fee of \$150 per week. After how many miles of travel are the total costs the same at both companies?

Example 3

5. WHAT IF? Company C charges \$3.30 per mile plus a flat fee of \$115 per week. After how many miles are the total costs the same at Company A and Company C?

ts

Exit Ticket:	
Solve the equation $3x - 4 = \frac{1}{2}x + 1$ by gr	aphing. Check your solution.
2	

Closure
