1. $x + y = 4$	2. $-2x + y = 10$
y = -x +4	4= 2 x +10
33x + y = 12	4. $2x - 5y = -1$
1+3×+15	-54= -2×-1
$6. \ 6x - y = 11$	6. $-\frac{2}{5}x + y = -2$
-A= -OH 11	4= = x-a
y= 6x -11	5 "

Warm Up

* Li	iteral	for the specified
	Solve	for the specified
	Varia	
In	this	case we turn
		quation into
Ц:	The x	tb
7	^	*
	Slone	y-Intercept
		3

Describe the transformation from the graph of f to the graph of g.

1.
$$f(x) = -\frac{1}{5}x - 2$$
; $g(x) = f(x) + 4$

2.
$$f(x) = -4x - 5$$
; $g(x) = f(x) - 1$

3.
$$f(x) = x + 1$$
; $g(x) = f(x) - 6$

+Skip for now +

02

to show transfor mations

Cumulative Warm Up

Essential Question

Can a system of linear equations have no solution or infinitely many solutions?

what you will learn:

& determine the number of solutions of linear systems

Use linear systems to solve real - life problems.

Essential Question

Work with a partner. You invest \$450 for equipment to make skateboards. The materials for each skateboard cost \$20. You sell each skateboard for \$20.

a. Write the cost and revenue equations. Then copy and complete the table for your cost ${\it C}$ and your revenue ${\it R}$.

x (skateboards)	0	1	2	3	4	5	6	7	8	9	10
C (dollars)	50	·PC	490	50	530	50	540	590	UN ^O	430	150
R (dollars)	0	10	40	MO	80	100	130	w	P	150	00

b. When will your company break even? What is wrong?

Hever: both cost and revenue increase. at the same rate, but have different initial values.

Exploration 1

Work with a partner. A necklace and matching bracelet have two types of beads.

The necklace has 40 small beads and 6 large beads and weighs 10 grams. The bracelet has 20 small beads and 3 large beads and weighs 5 grams. The threads holding the beads have no significant weight.

- a. Write a system of linear equations that represents the situation.
 Let x be the weight (in grams) of a small bead and let y be the weight (in grams) of a large bead.
- b. Graph the system in the coordinate plane shown. What do you notice about the two lines?
- c. Can you find the weight of each type of bead?

1.5 1.5 0.5 0 0.1 0.2 0.3 0.4 x

Explain your reasoning.

Exploration 2

Core Concept

- C = 450 + 20 x
 - R = 20x
- * Notice the Slope of

- 40x + 64 = 10
- 20x + 34 = 5
- Check Slopes (rate of change)

- One solution: different Slopes, may be (not) different y-Intercepts
- No solution: same slope different y-Intercept
- Infinite Solutions: Same slope Same y-Intercept (same line)

Solve the system of linear equation	s.
y = 2x + 1 Equation 1	المعالمين المراجع المر
y = 2x - 5 Equation 2	use substitution
ax+1 = ax-	5
1= -5	- 1s this ever
	true?
	11 40 (

Example 1

Solve the system of linear equations.
-2x + y = 3 Equation 1 -4x + 2y = 6 Equation 2
thy thy
2y = 4x + 6 4 = 2x + 3

Example 2

Solve the system of linear equations. 1. x + y = 3 2. y = -x + 3 2x + 2y = 6 2x + 2y = 4 3. x + y = 3 4. y = -10x + 2x + 2y = 4 10x + y = 10

Monitoring Progress 1-4

dine slop	e · par	allel
No solution	·	
	=======================================	

	Solutions	
line		
#		
TY	Х	1
**		
*		

* Student	practice.
2	
-	
*	
•	

The perimeter of the trapezoidal piece of land is 48 kilometers. The perimeter of the rectangular piece of land is 144 kilometers. Write and solve a system of linear equations to find the values of x and y. In finite many Solutions	trap: 2 x +4x + 6y + 6y = 48 6 x + 12 y = 48 retangle: 9 x +9 x + 18y + 18y = 144 18 x + 36 y = 144
	System: 6x +12y = 48 (-3) 18x +36y = 144 -18x -36y = -144 0 = 0 15 this ** true?
Example 3	
5. WHAT IF? What happens to the solution in Example 3 when the perimeter of the trapezoidal piece of land is 96 kilometers? Explain.	Check the slopes and see what happens?
	* The system would have no solution; the lines still have the same slope but different y-Intercepts so the lines are parallel.
Monitoring Progress 5	
Exit Ticket: Write a system of equations that has no solution.	
Write a system of equations that has infinitely many solutions.	

Closure