Simplify.	
1. $4(x-1) + 6(x+6)$	2. 7(y + 8) + (2 + 3y)
EE + XOI	104 158
3. 3[x + 3(x + 2)]	44[x - 4(4 + x)]
13×+18	19×+6H
5. 3x + 2[x + (5 + x)]	66x + 3[x + 5(x - 6)] + 8
7x+10	E8-x61
טו ניא ו	

Warm Up

* use algebraic properties to solve.
* distributive property * combine like terms * watch negatives
* Check solutions against your work - ask questions If you don't understand

Identify the vertex, focus, directrix, and axis of symmetry of the parabola.

1. $y = \frac{1}{7}(x+4)^2 - 1$ 2. $y = \frac{1}{15}(x+4)^2$ 3. $y = -\frac{1}{8}(x-3)^2$ 4. $y = \frac{1}{4}(x-4)^2 + 4$

Cumulative Warm Up

4.	=======================================
v1	

Essential Question
What are the subsets of the set of complex numbers?

* Imaginary unit only applies to even

Toots.

* Define and Use
Imaginary unit i

* Add, Subtract, and
multiply complex humbers

* find complex solutions and
zeros.

Work with a partner. Determine which subsets of the set of complex numbers contain each number.

- a. √9
- \mathbf{b} . $\sqrt{0}$
- c. –√4

- **d.** $\sqrt{\frac{4}{9}}$
- $e.\sqrt{2}$
- f. $\sqrt{-1}$

Exploration 1

Imaginary unit (i) defined
a des de vel
note 12 = -1
The Imaginary unit i
can be used to write
the square root of

Work with a partner. Use the definition of the imaginary unit i to match each quadratic equation with its complex solution. Justify your answers.

- **a.** $x^2 4 = 0$
- **b.** $x^2 + 1 = 0$
- c. $x^2 1 = 0$

- **d.** $x^2 + 4 = 0$
- $f. x^2 + 9 = 0$

- **A.** *i* D. 2i
- B. 3i E. 1
- **C**. 3 F. 2

- - Y= aL

Exploration 2

X2-4=0	x2 +1 = 0
X2 = 4	x2=-1
Vx2 = V4	Vx2= V-1
x = 2	x = L
12	
X3-1=0	X2 -9=0
X3= 1	X2=9
Jx2 = JT	Vx2 = J9
X= 1	Y-3

G Core Concept

The Square Root of a Negative Number

- 1. If r is a positive real number, then $\sqrt{-r} = i\sqrt{r}$.
- Example
- $\sqrt{-3} = i\sqrt{3}$
- 2. By the first property, it follows that $(i\sqrt{r})^2 = -r$.
- $(i\sqrt{3})^2 = i^2 \cdot 3 = -3$

Core Concept

Find the square $\mathbf{a}.\sqrt{-25}$	root of each number. b. $\sqrt{-72}$	c. −5√−9
	V-1./72	-55-1.19
V-1. Vas	2 36	-5 L.3
i.5	F1.15.150	
5L	i. va. 6	-15i
	6112	
	GLVa	
		=

Find the so	quare root of t	he number.		3
1. √–4	2. $\sqrt{-12}$	3. –√–36	4. $2\sqrt{-54}$	
V-1.14	V-1.VT			
	V 1.41			
l·a	4	3		
ai	i L·a	.52		
<i>3</i> C				
	ain	3		
	0			

Monitoring Progress 1-4

Find the values of x and y	withat satisfy the equation $2x - 7i = 10 + yi$.
$\frac{\partial x}{\partial x} = \frac{10}{2}$	-7i = yi
X= 5	-7= y

Example 2

you can rewrite negatives
seperating things out.
Seperating things out. This will help you to theep your work organized
· · · · · · · · · · · · · · · · · · ·

additi Studer	7+5.	che	CIL I	OUR
WORK	and	æsil	for	help
·				
-				

Comple	ex nu	ımı	oer:	Star	ndar
	α	+	<u>bi</u>	1	
			<u> </u>		
	real		- /w	part	ary
	bout			Part	
\$ Set	(00)	nar	ts o	auni)
* Set	mag	mar	2 0	acts	
2011	01		1 4	100	

Monitoring Progress 5-6

\$ Set the real parts
set the real parts equal - solve for the Variable
Variable
* set Imaginary parts
earny find the only
value that will make
the equation true.

G Core Concept

Sums and Differences of Complex Numbers

To add (or subtract) two complex numbers, add (or subtract) their real parts and their imaginary parts separately.

Sum of complex numbers:

(a + bi) + (c + di) = (a + c) + (b + d)i

Difference of complex numbers:

(a + bi) - (c + di) = (a - c) + (b - d)i

Core Concept

* Same idea as
Combining like terms

* Imaginary units can
be combined just like
Variable terms - follow
the same rules.

Add or subtract. Write the answer in standard form.

a. (8 - i) + (5 + 4i)

(8 + 5) + (- i + 4i)

13 + 3i

b. (7 - 6i) - (3 - 6i)

(7 - 3) + (- bi+ bi)

4

c. 13 - (2 + 7i) + 5i

13 - 3 - 7 i + 5i

11 - 3 i

Example 3

* always answer in standard form

A + bi

* watch signs - distribute negatives first to stay organized.

Electrical circuit components, such as resistors, inductors, and capacitors, all oppose the flow of current. This opposition is called *resistance* for resistors and *reactance* for inductors and capacitors. Each of these quantities is measured in ohms. The symbol used for ohms is Ω , the uppercase Greek letter omega.

Component and symbol	Resistor	Inductor	Capacitor —
Resistance or reactance (in ohms)	R	L _i	с
Impedance (In ohms)	R	Li	-Ci

The table shows the relationship between a component's resistance or reactance and its contribution to impedance. A *series circuit* is also shown with the resistance or reactance of each component labeled. The impedance for a series circuit is the sum of the impedances for the individual components. Find the impedance of the circuit.

Example 4

Multiply. Write the answer in st a. $4i(-6 + i)$	andard form. b. (9 - 2 <i>i</i>)(-4 + 7 <i>i</i>)
41 (6) + (41.1)	191-21
-241 +4(-1)	-4 -36 8L
- 341 - H	+71 631 14 181+131
-4-941	-32+71i

Example 5

7. WHAT IF? In Example 4, what is the impedance of the circuit when the capacitor is replaced with one having a reactance of 7 ohms?

Perform the operation. Write the answer in standard form.

8.
$$(9-i) + (-6+7i)$$
 9. $(3+7i) - (8-2i)$ 10. $-4-(1+i) - (5+9i)$

11. (-3*i*)(10*i*)

12. i(8 - i)

13. (3 + *i*)(5 - *i*)

Impedance	of Circuit	
5+31+	(-4i) =5-L	
5-L = 5-L		

¥	Im	pedar	ce	20	the	Circui	+
		15-1					

* +1	multi	ply	two	Complex
num	ibers .	use	the	
dist	ribution	se p	ropert	yor
the	FOIL	me	thod.	

* alu	Days sto	He	your
final	answer	in	Standard
form.			

				tions
and	1116	701	7	itui
CILIO	<u>un</u>	Swei	٥,	

opero	proper	to ur	100
the	oqua	ria.	
even us to	Index	requ	tires the
ositive	and	negati	ve solu

Example 7

* always Check your answer to make sure both solutions work for the given equation

Solve the equation	n.		
14. $x^2 = -13$	15. $x^2 = -38$	$16. x^2 + 11 = 3$	
			9
17. x² − 8 = −36	18. $3x^2 - 7 = -31$	19. $5x^2 + 33 = 3$	
Find the zeros of	the function.		
20. $f(x) = x^2 + 7$	21. $f(x) = -x^2 - 4$	22. $f(x) = 9x^2 + 1$	

X	Student	practice	-
_	er i	(V)	
	=		

Monitoring Progress 14-22

I Used to Think But Now I Know: Take time for students to reflect on their current understanding of complex numbers.	nave learned, what question do you still have?
	,
Cloqueo	

*