\qquad
\qquad
9.1

Practice A

In Exercises 1-9, simplify the expression.

1. $\sqrt{50}$
2. $\sqrt{68}$
3. $-\sqrt{98}$
4. $\sqrt{\frac{9}{25}}$
5. $-\sqrt{\frac{3}{64}}$
6. $-\sqrt{\frac{x^{2}}{4}}$
7. $\sqrt[3]{24}$
8. $\sqrt[3]{-250}$
9. $-\sqrt[3]{128 x^{4}}$
10. Describe and correct the error in simplifying the expression.

$$
X \sqrt[3]{16}=4
$$

In Exercises 11-13, write a factor that you can use to rationalize the denominator of the expression.
11. $\frac{3}{\sqrt{5}}$
12. $\frac{1}{\sqrt{7 n}}$
13. $\frac{5}{\sqrt[3]{9}}$

In Exercises 14-22, simplify the expression.
14. $\frac{3}{\sqrt{3}}$
15. $\frac{9}{\sqrt{5}}$
16. $\frac{\sqrt{3}}{\sqrt{50}}$
17. $\frac{4}{\sqrt{w}}$
18. $\frac{1}{\sqrt{5 t}}$
19. $\sqrt{\frac{2 z^{2}}{7}}$
20. $\frac{1}{\sqrt{6}-1}$
21. $\frac{3}{4+\sqrt{2}}$
22. $\frac{\sqrt{3}}{5-\sqrt{2}}$
23. The average annual interest rate r (in decimal form) of a savings account is represented by the formula $r=\sqrt{\frac{V_{2}}{V_{0}}}-1$, where V_{0} is the initial investment and V_{2} is the balance of the account after 2 years. Find the average annual interest rate r of a savings account with an initial investment of $\$ 400$ and a balance of $\$ 422$ after 2 years.

