

In Exercises 1–9, simplify the expression.

- 1. $\sqrt{50}$ 2. $\sqrt{68}$ 3. $-\sqrt{98}$

 4. $\sqrt{\frac{9}{25}}$ 5. $-\sqrt{\frac{3}{64}}$ 6. $-\sqrt{\frac{x^2}{4}}$

 7. $\sqrt[3]{24}$ 8. $\sqrt[3]{-250}$ 9. $-\sqrt[3]{128x^4}$
- **10.** Describe and correct the error in simplifying the expression.

$$\chi \sqrt[3]{16} = 4$$

In Exercises 11–13, write a factor that you can use to rationalize the denominator of the expression.

11. $\frac{3}{\sqrt{5}}$ **12.** $\frac{1}{\sqrt{7n}}$ **13.** $\frac{5}{\sqrt[3]{9}}$

In Exercises 14–22, simplify the expression.

- 14. $\frac{3}{\sqrt{3}}$ 15. $\frac{9}{\sqrt{5}}$ 16. $\frac{\sqrt{3}}{\sqrt{50}}$

 17. $\frac{4}{\sqrt{w}}$ 18. $\frac{1}{\sqrt{5t}}$ 19. $\sqrt{\frac{2z^2}{7}}$
- **20.** $\frac{1}{\sqrt{6}-1}$ **21.** $\frac{3}{4+\sqrt{2}}$ **22.** $\frac{\sqrt{3}}{5-\sqrt{2}}$
- **23.** The average annual interest rate *r* (in decimal form) of a savings account is represented by the formula $r = \sqrt{\frac{V_2}{V_0}} 1$, where V_0 is the initial investment and V_2 is the balance of the account after 2 years. Find the average annual interest rate *r* of a savings account with an initial investment of \$400 and a balance of \$422 after 2 years.