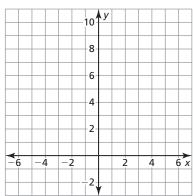
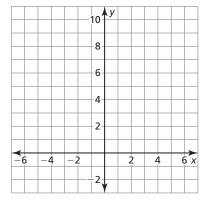
Name Date

Graphing
$$f(x) = a$$
For use with Exploration 8.4

Graphing $f(x) = a(x-h)^2 + k$


Essential Question How can you describe the graph of $f(x) = a(x - h)^2$?

EXPLORATION: Graphing $y = a(x - h)^2$ When h > 0

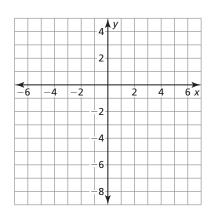

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of h affect the graph of $y = a(x - h)^2$?

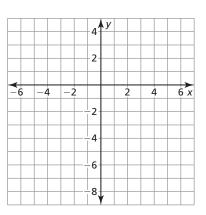
a.
$$f(x) = x^2$$
 and $g(x) = (x - 2)^2$

b.
$$f(x) = 2x^2$$
 and $g(x) = 2(x-2)^2$

Name Date


Graphing $f(x) = a(x - h)^2 + k$ (continued)

EXPLORATION: Graphing $y = a(x - h)^2$ When h < 0


Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of h affect the graph of $y = a(x - h)^2$?

a.
$$f(x) = -x^2$$
 and $g(x) = -(x+2)^2$

a.
$$f(x) = -x^2$$
 and $g(x) = -(x+2)^2$ **b.** $f(x) = -2x^2$ and $g(x) = -2(x+2)^2$

Communicate Your Answer

- **3.** How can you describe the graph of $f(x) = a(x h)^2$?
- 4. Without graphing, describe the graph of each function. Use a graphing calculator to check your answer.

a.
$$y = (x - 3)^2$$

b.
$$y = (x + 3)^2$$

c.
$$y = -(x-3)^2$$

Notetaking with Vocabulary For use after Lesson 8.4

In your own words, write the meaning of each vocabulary term.

even function

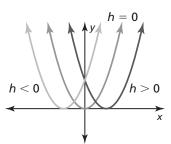
odd function

vertex form (of a quadratic function)

Core Concepts

Even and Odd Functions

A function y = f(x) is **even** when f(-x) = f(x) for each x in the domain of f. The graph of an even function is symmetric about the y-axis.


A function y = f(x) is **odd** when f(-x) = -f(x) for each x in the domain of f. The graph of an odd function is symmetric about the origin. A graph is *symmetric about the origin* when it looks the same after reflections in the x-axis and then in the y-axis.

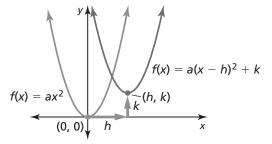
Notes:

Graphing $f(x) = a(x - h)^2$

- When h > 0, the graph of $f(x) = a(x h)^2$ is a horizontal translation h units right of the graph $f(x) = ax^2$.
- When h < 0, the graph of $f(x) = a(x h)^2$ is a horizontal translation |h| units left of the graph of $f(x) = ax^2$.

The vertex of the graph of $f(x) = a(x - h)^2$ is (h, 0), and the axis of symmetry is x = h.

Notes:


Name______ Date_____

8.4 Notetaking with Vocabulary (continued)

Graphing $f(x) = a(x-h)^2 + k$

The **vertex form** of a quadratic function is $f(x) = a(x - h)^2 + k$, where $a \ne 0$. The graph of $f(x) = a(x - h)^2 + k$ is a translation h units horizontally and k units vertically of the graph of $f(x) = ax^2$.

The vertex of the graph of $f(x) = a(x - h)^2 + k$ is (h, k), and the axis of symmetry is x = h.

Notes:

Extra Practice

In Exercises 1–4, determine whether the function is even, odd, or neither.

1.
$$f(x) = 5x$$

2.
$$f(x) = -4x^2$$

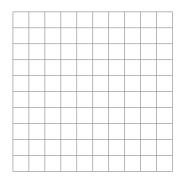
3.
$$h(x) = \frac{1}{2}x^2$$

4.
$$f(x) = -3x^2 + 2x + 1$$

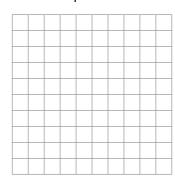
In Exercises 5–8, find the vertex and the axis of symmetry of the graph of the function.

5.
$$f(x) = 5(x-2)^2$$

6.
$$f(x) = -4(x+8)^2$$

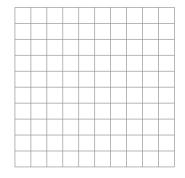

8.4 Notetaking with Vocabulary (continued)

7.
$$p(x) = -\frac{1}{2}(x-1)^2 + 4$$

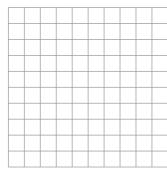

8.
$$g(x) = -(x+1)^2 - 5$$

In Exercises 9 and 10, graph the function. Compare the graph to the graph of $f(x)=x^2.$

9.
$$m(x) = 3(x+2)^2$$



10.
$$g(x) = -\frac{1}{4}(x-6)^2 + 4$$



In Exercises 11 and 12, graph g.

11.
$$f(x) = 3(x+1)^2 - 1; g(x) = f(x+2)$$

11.
$$f(x) = 3(x+1)^2 - 1$$
; $g(x) = f(x+2)$ **12.** $f(x) = \frac{1}{2}(x-3)^2 - 5$; $g(x) = -f(x)$

