Practice A

In Exercises 1-3, determine whether the function is even, odd, or neither.

1.
$$g(x) = 4^x - 1$$

2.
$$f(x) = 2x - 5$$

3.
$$h(x) = 2x^2 + 5$$

In Exercises 4 and 5, determine whether the function represented by the graph is even. odd. or neither.

5.

In Exercises 6-8, find the vertex and the axis of symmetry of the graph of the function.

6.
$$f(x) = 4(x+2)^2$$

6.
$$f(x) = 4(x+2)^2$$
 7. $f(x) = \frac{1}{3}(x-3)^2$ **8.** $y = -5(x+7)^2$

8.
$$y = -5(x + 7)^2$$

In Exercises 9-11, graph the function. Compare the graph to the graph of $f(x) = x^2.$

9.
$$g(x) = 2(x+1)^{2}$$

10.
$$g(x) = 3(x-2)^2$$

9.
$$g(x) = 2(x+1)^2$$
 10. $g(x) = 3(x-2)^2$ **11.** $g(x) = \frac{1}{4}(x+6)^2$

In Exercises 12-14, find the vertex and the axis of symmetry of the graph of the function.

12.
$$y = -5(x+3)^2 - 2$$

12.
$$y = -5(x+3)^2 - 2$$
 13. $f(x) = 2(x-2)^2 + 5$ **14.** $y = -3(x+5)^2 - 4$

14.
$$y = -3(x+5)^2 - 4$$

In Exercises 15 and 16, graph the function. Compare the graph to the graph of $f(x) = x^2.$

15.
$$g(x) = (x-3)^2 + 2$$

16.
$$g(x) = -(x+2)^2 - 4$$

In Exercises 17 and 18, rewrite the quadratic function in vertex form.

17.
$$y = 2x^2 + 4x - 1$$

18.
$$f(x) = 3x^2 - 12x + 4$$

19. The graph of $y = x^2$ is translated 4 units left and 3 units down. Write an equation for the function in vertex form and in standard form. Describe advantages of writing the function in each form.