\qquad
\qquad

8.4
 Practice A

In Exercises 1-3, determine whether the function is even, odd, or neither.

1. $g(x)=4^{x}-1$
2. $f(x)=2 x-5$
3. $h(x)=2 x^{2}+5$

In Exercises 4 and 5, determine whether the function represented by the graph is even, odd, or neither.
4.

5.

In Exercises 6-8, find the vertex and the axis of symmetry of the graph of the function.
6. $f(x)=4(x+2)^{2}$
7. $f(x)=\frac{1}{3}(x-3)^{2}$
8. $y=-5(x+7)^{2}$

In Exercises 9-11, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
9. $g(x)=2(x+1)^{2}$
10. $g(x)=3(x-2)^{2}$
11. $g(x)=\frac{1}{4}(x+6)^{2}$

In Exercises 12-14, find the vertex and the axis of symmetry of the graph of the function.
12. $y=-5(x+3)^{2}-2$
13. $f(x)=2(x-2)^{2}+5$
14. $y=-3(x+5)^{2}-4$

In Exercises 15 and 16, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
15. $g(x)=(x-3)^{2}+2$
16. $g(x)=-(x+2)^{2}-4$

In Exercises 17 and 18, rewrite the quadratic function in vertex form.
17. $y=2 x^{2}+4 x-1$
18. $f(x)=3 x^{2}-12 x+4$
19. The graph of $y=x^{2}$ is translated 4 units left and 3 units down. Write an equation for the function in vertex form and in standard form. Describe advantages of writing the function in each form.

