Chapter 8 Section 3

Complete the exercise.

1. Does (4, 3) satisfy the equation $y = 3x^2 - x + 7$?

2. Does (0, -1) satisfy the equation $y = -2x^2 + \frac{1}{2} - 1$?

3. Does (5, 0) satisfy the equation $y = 4x^2 - 2x + 4$?

4. Does (-1, -9) satisfy the equation $y = -2x^2 + 3x - 4$?

Warm Up

Solve the inequality. Graph the solution.

1. 4*y* ≥ −12

2. 36 > 6t

3. $\frac{a}{2}$ > 9.3

4. -18 ≥ $\frac{9}{2}t$

Cumulative Warm Up

Essential Question

How can you find the vertex of the graph of $f(x) = ax^2 + bx + c$?

What	HON	Will	learn:
	7		

Gra on	Quadratic	functions
of the	A	

· Theview solving Inequalities

fex) = ax2 +bx+c

· Find Maximum and Minimum Values of the quadratic

Essential Question

Work with a partner.

a. Sketch the graphs of $y = 2x^2 - 8x$ and $y = 2x^2 - 8x + 6$.

b. What do you notice about the x-coordinate of the vertex of each graph?

c. Use the graph of $y = 2x^2 - 8x$ to find its x-intercepts. Verify your answer by solving $0 = 2x^2 - 8x$

 ${\bf d}.$ Compare the value of the x-coordinate of the vertex with the values of the x-intercepts.

Exploration 1

Work with a partner.

a. Solve $0 = ax^2 + bx$ for x by factoring,

b. What are the x-intercepts of the graph of $y = ax^2 + bx$?

c. Copy and complete the table to verify your answer.

$y = ax^2 + bx$

Exploration 2

Work with a partner. Complete the following logical argument.

The x-intercepts of the graph of $y = ax^2 + hx$ are 0 and $-\frac{b}{a}$.

The vertex of the graph of $y = ax^2 + bx$ occurs when $x = 3^{-3/2}$.

The vertices of the graphs of $y = ax^2 + bx$ and $y = ax^2 + bx + c$ have the same x-coordinate.

The vertex of the graph of $y = ar^2 + bx + c$ occurs when $x = \frac{1}{2}$

practice

practice

Core Concept

· Standard form
· y-Intercept
· 4-Intercept
3
· box at a term
positive = U
· negative =
1

Find (a) the axis of symmetry and (b) the vertex of the graph of $f(x) = 2x^2 + 8x - 1.$ X = -b A = -8 A

- \(\(\begin{array}{c} - \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1
	8-1
	mple 1

· find axis of symmetry
· Solve for x
· plug Value Into quadratic
to find y
· (x,y) = vertex

vertex

Find (a) the axis of sy	ymmetry and (b) the verte	x of the graph of the
1. $f(x) = 3x^2 - 2x$	2. $g(x) = x^2 + 6x + 5$	

3. $h(x) = -\frac{1}{2}x^2 + 7x - 4$		

student practice			
<u> </u>			
×			
(F)			
			

Graph $f(x) = 3x^2 - 6x + 5$. Describe the domain and range.

$$X = -(-6) = 6 = 1$$

$$X = -(-6) = 6 = 1$$

$$2(3) = 6 = 1$$

$$Vertex(1,2)$$

$$3 - 6 + 5$$

$$-3 + 5$$

d = all real #15

ء ۲	42	2	E
-----	----	---	---

Example 2

axis	of	symmetr	74
ver te	4		,
+	06	-	
n dic	can	ion does	Ü
in 8	₹	x-value	5
e a	11 1	1 - values	
		1	
	verte	vertex t or n direct	n direction does

Graph the function. Describe the domain and range.

4.
$$h(x) = 2x^2 + 4x + 1$$

5. $k(x) = x^2 - 8x + 7$

6.
$$p(x) = -5x^2 - 10x - 2$$

* Student practice

Monitoring Progress 4-6

Core	Conce	ot
0010	COLICCI	v

· open up	vs op	en daun
a > 0	V	+
a 4 0	1	-
-		
2.7		
St.		

Tell whether the function $f(x) = -4x^2 - 24x - 19$ has a minimum value or a maximum value. Then find the value.

max value

$$X = -\frac{(-24)}{3(-4)} = \frac{34}{-8} = -3$$

Example 3

The suspension cables between the two towers of the Mackinac Bridge in Michigan form a parabola that can be modeled by

 $y = 0.000098x^2 - 0.37x + 552$, where x and y are measured in feet. What is the height of the cable above the water at its lowest point?

y=.000098(1888)=. 37(1888)+3522

Cable 1s about 203 ft.

along the water

at the lawst paint.

Example 4

Tell whether the function has a minimum value or a maximum value. Then find the value.

7.
$$g(x) = 8x^2 - 8x + 6$$

8.
$$h(x) = -\frac{1}{4}x^2 + 3x + 1$$

The cables between the two towers of the Tacoma Narrows Bridge in Washington form a parabola that can be modeled by

 $y = 0.00016x^2 - 0.46x + 507$, where x and y are measured in feet. What is the height of the cable above the water at its lowest point?

* Student practice

A group of friends is launching water balloons. The function $f(t) = -16t^2 + 80t + 5$ represents the height (in feet) of the first water balloon t seconds after it is launched. The height of the second water balloon t seconds after it is launched is shown in the graph. Which water balloon went higher?

Example 5

10. Which balloon is in the air longer? Explain your reasoning.

11. Which balloon reaches its maximum height faster? Explain your reasoning.

Monitoring Progress 10-11

Write an equation of a quadratic function that opens up, has a negative y-intercept, and is wider than the graph of $y = x^2$.