	· Solving for x-Intercept ->
Find the x- and y-intercepts. 1. $x + y = 4$ 2. $y = x - 11$ 3. $y = 2x - 13$ 4. $2x - 5y = -1$ 5. $6x - y = 12$ 6. $y = \frac{1}{6}x + 3$	· solving for y- Intercept > make x=0
Warm Up	
Complete the statement with always, sometimes, or never. Explain your reasoning. 1. If $x^2 = y^2$, then x is equal $to y $. 2. If x and y are real numbers, then $ x+y $ is equal $to y+x $. 3. For any real number d , the equation $ x+5 = d$ will have no solution.	Vocab review
Cumulative Warm Up	
Essential Question: How does the value of c affect the graph of $f(x) = ax^2 + c$?	· Solve real-life problems involving functions of the form fcx) = ax²+c · Solve real-life problems involving functions of the form fcx) = ax²+c

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. What do you notice?

a.
$$f(x) = x^2$$
 and $g(x) = x^2 + 2$

b.
$$f(x) = 2x^2$$
 and $g(x) = 2x^2 - 2$

Exploration 1

Work with a partner. Graph each function. Find the *x*-intercepts of the graph. Explain how you found the *x*-intercepts.

a.
$$y = x^2 - 7$$

b.
$$y = -x^2 + 1$$

Exploration 2

G Core Concept

Graphing $f(x) = ax^2 + c$

- When c > 0, the graph of f(x) = ax² + c
 is a vertical translation c units up of the
 graph of f(x) = ax².
- When c < 0, the graph of f(x) = ax² + c is a vertical translation |c| units down of the graph of f(x) = ax².

The vertex of the graph of $f(x) = ax^2 + c$ is (0, c), and the axis of symmetry is x = 0.

Core Concept

* practice

· additional translation

· how does c affect

the graph? Shift up o

y-Intercept?

Graph
$$g(x) = x^2 - 2$$
. Compare the graph to the graph of $f(x) = x^2$,

Example 1

	_	1	<u>U</u>	701	nei		
a	te	1	طيه	le	20	Val	O
			re				
DX	m	100	re				
U		Pu	., .				

Graph the function. Compare the graph to the graph of $f(x) = x^2$. 1. $g(x) = x^2 - 5$ 2. $h(x) = x^2 + 3$

Monitoring Progress 1-2

· create tables

Graph $g(x) = 4x^2 + 1$. Compare the graph to the graph of $f(x) = x^2$.

	l .
	1
	l .
	l
_	l.

Example 2

		_		
	1 6		77,	_
			5	

Let $f(x) = -0.5x^2 + 2$ and g(x) = f(x) - 7.

a. Describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane.

b. Write an equation that represents *g* in terms of *x*.

$$g(x) = f(x) - 7$$
= -0.5 x² + 2 - 7
= -0.5 x²-5

Example 3

Graph the function. Compare the graph to the graph of $f(x) = x^2$,

3.
$$g(x) = 2x^2 - 5$$

4.
$$h(x) = -\frac{1}{4}x^2 + 4$$

5. Let
$$f(x) = 3x^2 - 1$$
 and $g(x) = f(x) + 3$.

a. Describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane.

b. Write an equation that represents g in terms of x.

Monitoring Progress 3-5

* Student practice

The function $f(t) = -16t^2 + s_0$ represents the approximate height (in feet) of a falling object t seconds after it is dropped from an initial height s_0 (in feet). An egg is dropped from a height of 64 feet.

a. After how many seconds does the egg hit the ground?

The egg hits the ground after 2 secunds

b. Suppose the initial height is adjusted by *k* feet. How will this affect part (a)?

if adjusted up K units ->
move right K units

X	14	
0	4	X-Intercept = y
, i	48	0.
2	0	

- If adjusted clawn 12 units
move left 12 units

6. Explain why only nonnegative values of t are used in Example 4.7. WHAT IF? The egg is dropped from a height of 100 feet. After how many seconds does the egg hit the ground?	would represent time before the egg was dropped which have no meaning in the context of this problem 7.) 2.5 sec.
Monitoring Progress 6-7	
Writing Prompt: The graph of $y = -4x^2 + 12$ is	
Closure	