Start Thinking

Use a graphing calculator to graph the functions in the table. Then complete the table.

Quadratic equation	Shape	Relationship to $y = x^2$
$y = 2x^2$		
$y = \frac{1}{2}x^2$		
$y = -x^2$		
$y = (2x)^2$		

How does the value of the coefficient of x^2 change the graph of the quadratic equation? Which graph looks the most different from the others? Explain.

Warm Up

Graph the equation.

1.
$$v = -x - 1$$

1.
$$y = -x - 1$$
 2. $y = \frac{3}{2}x + 2$ **3.** $y = -x - 2$

3.
$$y = -x - 2$$

4.
$$y = 3x + 3$$

5.
$$y = x$$

4.
$$y = 3x + 3$$
 5. $y = x$ **6.** $y = \frac{3}{4}x - 3$

Cumulative Review Warm Up

Use the Distributive Property to find the product.

1.
$$(x-2)(x-2)$$

2.
$$(z + 6)(z - 2)$$

1.
$$(x-2)(x-2)$$
 2. $(z+6)(z-2)$ **3.** $(g+8)(g+1)$

4.
$$(y-7)(y-3)$$
 5. $(4m)(m-10)$ **6.** $(x-4)(x-1)$

5.
$$(4m)(m-10)$$

6.
$$(x-4)(x-1)$$

8.1 Practice A

In Exercises 1–6, graph the function. Compare the graph to the graph of $f(x) = x^2$.

1.
$$g(x) = 4x^2$$

2.
$$h(x) = 1.5x^2$$

3.
$$j(x) = \frac{1}{3}x^2$$

4.
$$g(x) = -3x^2$$

5.
$$k(x) = -\frac{5}{2}x^2$$

6.
$$n(x) = -0.5x^2$$

In Exercises 7–9, use a graphing calculator to graph the function. Compare the graph to the graph of $y = -5x^2$.

7.
$$y = 5x^2$$

8.
$$y = -0.5x^2$$

9.
$$v = -0.05x^2$$

- **10.** The arch support of a bridge can be modeled by $y = -0.00125x^2$, where x and y are measured in feet.
 - **a.** The width of the arch is 800 feet. Describe the domain of the function. Explain.
 - **b.** Use a graphing calculator to graph the function, using the domain in part (a). Find the height of the arch.
- **11.** Is the *y*-intercept of the graph of $y = ax^2$ always 0? Explain.

In Exercises 12–15, determine whether the statement is *always*, *sometimes*, or *never* true. Explain your reasoning.

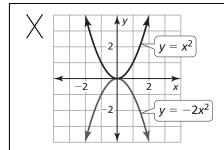
- **12.** The graph of $f(x) = ax^2$ is narrower than the graph of $g(x) = dx^2$ when d = -a.
- **13.** The graph of $f(x) = ax^2$ opens in the same direction as the graph of $g(x) = dx^2$ when d = |a|.
- **14.** The graph of $f(x) = ax^2$ opens in the same direction as the graph of $g(x) = dx^2$ when g(x) = f(-x).
- **15.** The graph of $f(x) = ax^2$ opens in the same direction as the graph of $g(x) = dx^2$ when g(x) = -f(x).

8.1 Practice B

In Exercises 1–6, graph the function. Compare the graph to the graph of $f(x) = x^2$.

1.
$$g(x) = 7x^2$$

2.
$$h(x) = 0.25x^2$$


3.
$$j(x) = \frac{7}{2}x^2$$

4.
$$g(x) = -\frac{5}{3}x^2$$

5.
$$k(x) = -\frac{3}{4}x^2$$

6.
$$n(x) = -0.4x^2$$

7. Describe and correct the error in graphing and comparing $y = x^2$ and $y = -2x^2$.

The graphs have the same vertex and the same axis of symmetry. The graph of $y = -2x^2$ is a reflection in the x-axis of the graph of $y = x^2$.

- **8.** The arch support of a bridge can be modeled by $y = -\frac{1}{300}x^2$, where x and y are measured in feet.
 - **a.** The width of the arch is 900 feet. Describe the domain of the function. Explain.
 - **b.** Use a graphing calculator to graph the function, using the domain in part (a). Find the height of the arch.
- **9.** A parabola opens down and passes through the points (-3, 4) and (1, -2). How do you know that (-3, 4) could be the vertex?
- **10.** Given the parabola $f(x) = ax^2$.
 - **a.** Find the value of a when the graph passes through (3, -1) and a < 0.
 - **b.** Find the value of a when the graph passes through (3, -1) and a > 0. Explain.

Name_____ Date_____

8.1 Enrichment and Extension

Working with Quadratic Functions

In Exercises 1–14, use your knowledge of quadratic functions.

- **1.** Write the equation of any quadratic function (except $y = x^2$).
- **2.** Graph the function.
- **3.** Determine the maximum (or minimum) point of the equation.
- **4.** Determine the domain and range for the function.
- **5.** What is the solution to the equation $x^2 = 25$?
- **6.** Graph the function $y = x^2 25$.
- **7.** How does the graph of the function in Exercise 6 help in determining the solution to the equation?
- **8.** What is the solution to the equation $x^2 = 16$?
- **9.** Graph the function $y = x^2 16$.
- **10.** How does the graph of the function in Exercise 9 help in determining the solution to the equation?
- **11.** What is the solution to the equation $x^2 = -4$?
- **12.** Graph the function $y = x^2 + 4$.
- **13.** Why is the graph of this function different from the graphs of the functions in Exercises 6 and 9?
- **14.** Make a conjecture of the possible reasons for your answer to Exercise 13.

Where Does A Squirrel Keep Its Winter Clothes?

Write the letter of each answer in the box containing the exercise number.

Compare the graph of the function to the graph of $f(x) = x^2$.

1.
$$b(x) = -x^2$$

2.
$$p(x) = 5x^2$$

3.
$$q(x) = \frac{1}{3}x^2$$

4.
$$t(x) = -4x^2$$

5.
$$c(x) = -0.2x^2$$

6.
$$h(x) = 6.4x^2$$

7.
$$r(x) = 0.12x^2$$

$$d(x) = -\frac{8}{5}x^2$$

9.
$$s(x) = \frac{2}{3}x^2$$

10.
$$k(x) = \frac{1}{9}x^2$$

- **11.** The graph of a parabolic bowl can be represented by $g(x) = \frac{2}{5}x^2$. Compare the graph to the graph of $f(x) = x^2$.
- **12.** The decorated archway at the entrance to a craft fair can be represented by $h(x) = -7x^2$. Compare the graph to the graph of $f(x) = x^2$.

Answers

- **E.** vertical shrink by a factor of $\frac{1}{3}$
- **T.** vertical shrink by a factor of $\frac{1}{9}$
- **K.** reflection in the *x*-axis; vertical shrink by a factor of 0.2
- **N.** reflection in the x-axis
- **A.** vertical shrink by a factor of $\frac{2}{5}$
- **T.** vertical shrink by a factor of 0.12
- **R.** reflection in the *x*-axis; vertical stretch by a factor of 4
- **N.** vertical stretch by a factor of 5
- **R.** reflection in the *x*-axis; vertical stretch by a factor of $\frac{8}{5}$
- **I.** vertical stretch by a factor of 6.4
- **E.** vertical shrink by a factor of $\frac{2}{3}$
- **U.** reflection in the *x*-axis; vertical stretch by a factor of 7