Solve the equation.

1.
$$-3(x-1)=4(x+1)$$

2.
$$2(x-1)=x^2-x$$

3.
$$4\left(x+\frac{3}{2}\right)=\left(x-2\right)3$$

4.
$$-2(x+1)=(x-8)(x-1)$$

5.
$$3x(2x) = 8(x+1)$$

6.
$$x(x-3)+4x(x-4)=3x(x-4)$$

Warm Up

Perform the indicated operation. Write your answer in standard form.

1.
$$(3+2i)-(5+i)$$

$$2. - 2i(11 + 7i)$$

3.
$$(-5+3i)^2$$

4.
$$(-4+9i)(5+6i)$$

5.
$$3i^5(4i^2-5i+8)$$

6.
$$(5-3i^7)-(11+2i^6)$$

Cumulative Warm Up

Essential Question

How can you solve a rational equation?

what you will learn:

· Solve varional equations by exoss multiplying

· Solving rational equations by using common obenominators

·Use Inverse Aunchions

Essential Question

Work with a partner. Match each equation with the graph of its related system of equations. Explain your reasoning. Then use the graph to solve the equation,

- a. $\frac{2}{3} = 1$
- b. $\frac{2}{x-2} = 2$
- C. $\frac{-x-1}{x-3} = x+1$

- $d_{x} = \frac{2}{x} = x$
- **e.** $\frac{1}{x} = \frac{-1}{x-2}$
- f. $\frac{1}{x} = x^2$

Exploration 1a-f

Exploration1 graphs

Work with a partner. Look back at the equations in Explorations 1(d) and 1(e). Suppose you want a more accurate way to solve the equations than using a graphical approach.

a. Show how you could use a *numerical approach* by creating a table. For instance, you might use a spreadsheet to solve the equations.

b. Show how you could use an *analytical approach*. For instance, you might use the method you used to solve proportions.

Exploration 2

* USE	graphing	50Ptuare
to	moren	

	. /	1.		
X.	- O	n	n	X
-			$\overline{}$	_

Skip		

*Ship *

Solve
$$\frac{3}{x+1} = \frac{9}{4x+5}$$
.
 $9(x+1) = 3(4x+5)$
 $9x+9 = 12x+15$
 $-9x-15 = -9x-15$
 $-\frac{10}{3} = \frac{3x}{3}$
 $-2 = x$

Example 1

An alloy is formed by mixing two or more metals. Sterling silver is an alloy composed of 92.5% silver and 7.5% copper by weight. You have 15 ounces of 800 grade silver, which is 80% silver and 20% copper by weight. How much pure silver should you mix with the 800 grade silver to make sterling silver?

percent = Weighto f copper
of copper = total weight
$$\frac{7.5}{100} = \frac{(0.2)(15)}{15 + x}$$

Example 2

Solve the equation by cross multiplying. Check your solution(s).

1.
$$\frac{3}{5x} = \frac{2}{x-7}$$

2.
$$\frac{-4}{x+3} = \frac{5}{x-3}$$

1.
$$\frac{3}{5x} = \frac{2}{x-7}$$
 2. $\frac{-4}{x+3} = \frac{5}{x-3}$ 3. $\frac{1}{2x+5} = \frac{x}{11x+8}$

to	Cras	55 Mu	ltipl	icat	lon .
			- 1		01
					Check
<u>Ori</u>	ginal	pro	blem	•	

use cross to solve.	multiplication

Student practice	
<i></i>	
·	
7.	

Solve each equation,

$$4x = -3$$

 $4(5) + 7(x) = -9(4)$
 $4(5) + 7(x) = -3(6)$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 $-36 = -36$
 -3

Example 3
$$(x-15)(x-1) \ge 0$$

 $x = 15$ $x = 1$

Clear tr olenamina tor (s)

Solve the equation by using the LCD. Check your solution(s).

$$4 \cdot \frac{15}{x} + \frac{4}{5} = \frac{7}{x}$$

5.
$$\frac{3x}{x+1} - \frac{5}{2x} = \frac{3}{2x}$$

5.
$$\frac{3x}{x+1} - \frac{5}{2x} = \frac{3}{2x}$$
 6. $\frac{4x+1}{x+1} = \frac{12}{x^2-1} + 3$

Monitoring Progress 4-6

Examp	le 4	MX2+PX-18	5
0=	<i>a</i> ((2x2+3x-9)	0

J'hudont	nractice
	P

Chock ansures Solve the equation. Check your solution(s).

7.
$$\frac{9}{x-2} + \frac{6x}{x+2} = \frac{9x^2}{x^2-4}$$

8.
$$\frac{7}{x-1}-5=\frac{6}{x^2-1}$$

Monitoring Progress 7-8

Consider the function $f(x) = \frac{2}{x+3}$.

Determine whether the inverse of f is a function.

Then find the inverse.

Example 5

In Section 7.2 Example 5, you wrote the function $c=\frac{50m+1000}{m}$, which represents the average cost c (in dollars) of making m models using a 3-D printer.

Find how many models must be printed for the average cost per model to fall to \$90 by (a) solving an equation, and (b) using the inverse of the function.

Suin		
-		
12		

Student practice

Example 6

9. Consider the function $f(x) = \frac{1}{x} - 2$.

Determine whether the inverse of f is a function. Then find the inverse.

10. WHAT IF? How do the answers in Example 6 change when $c = \frac{50m + 800}{?}$?

Monitoring Progress 9-10

 Muddiest Point: Ask students to identify, aloud or on a paper to be collected, the muddiest point(s) about the lesson. What was difficult to understand?

Closure