Notes Section 7.3: Special Products

Simplify.	1 1 -3
1. $(x-2)(x-2)$	2. $(y-2)(y+9)$
	79997-18 V3.2.18
3. $(z-2)(z-6)$	4. $(3x + 4)(x + 6)$
	3x, t4 x/3x ² /4
5. (4x - 6)(4x - 10)	6. (4a + b)(3a + 6b) + 6/18 x/24
	3x2+2axt

Warm Up

Warm up: Mu	Inplication
D / x / - 2	8 /2 /-2
x/x2/-2x	2 /22 /-22
-2/-2x/r4	-6/-62/+12
X2-4x+4	22-82+12
5) /41/ -6	@_/4a/tb
41x /16x7-24x	39/202/3ab
-10/-40x/+60	tub/2406 662
16x2-64x140	1202 1270616

Write an absolute value equation that has the given solutions.

1.
$$x = 9$$
 and $x = 17$ **2.** $x = 3$ and $x = 8$

3.
$$x = 5$$
 and $x = 16$ 4. $x = -3$ and $x = 10$

5.
$$x = -5$$
 and $x = 3$ 6. $x = -2$ and $x = 1$

Cumulative Warm Up

Chipx
- 12
(atb)
(a+b)(a+b)
a=tab tab t b=
Q3+aab+b3

Essential Qu	Colle
What are the patterns in $(a + b)(a - b)$, $(a + b)^2$, a	and (a - b)2?
3 - 6 -	(a-b)(a-b)
1 a 1 b a a 2 a b -b - a b - b 2 a 2 - b 2	a -b a -ab -b -ab +b= a - ab + b=

Essential Question

unat	you will learn:
-Use s binom	square of a
- Use Oliff	the sum and erence pattern
to so	pecial product pattern olve real life

Exploration 1

$\frac{1}{x} = \frac{1}{x^2} = \frac{1}{x$		aw the rectangular array of algebra tiles that wo binomials. Write the product. b. $(2x - 1)^2 =$
	· x+a	· 2x -1
	X Xa 2 y	2 4x2 -2x
X2 +4x+4 4x2-4x+1	t 2 4	-1 -2x +1
	X3 +HX+	4 4x2-4x+1

Exploration 2

Algebra $(a+b)^2 = a^2 + 2ab + b^2$	Example $(x + 5)^2 = (x)^2 + 2(x)(5) + (5)^2$ $= x^2 + 10x + 25$
$(a - b)^2 = a^2 - 2ab + b^2$	$(2x - 3)^2 = (2x)^2 - 2(2x)(3) + (2x - 1)^2 + (2x - 1)^2 + (2x - 1)^2$ $= 4x^2 - 12x + 9$

_	_	
Core	Con	cont
COLE	COL	ICEDI

The Save	
# 85 F # 194 F	

use	area	model	
	Line	use area	use area model

practice	aria	model	
V		131/6	_
			_
	-		-
	- I		
		-	

Find each product. a. $(3x + 4)^2$ b. $(5x + 4)^2$	-21)2 15x-2y/15x-2y

Example 1

* remember	the	expo	nen+
* remember affects base is the paren	the b	ase, t	he.
base is	every	thing	n
the paren	ithesis".	-	
* discuss	Short	0	
* 0.5005	SHOTE	Cut.	
-			
-			

Find the product.

1. $(x + 7)^2$

2. $(7x - 3)^2$

3. $(4x - y)^2$

4. $(3m + n)^2$

Monitoring Progress 1-4

Sum and Difference Pattern

Algebra

Example

 $(a + b)(a - b) = a^2 - b^2$

 $(x + 3)(x - 3) = x^2 - 9$

* difference of two Squares.	

Core Concept

Find each product.					
a. $(t+5)(t-5)$	b.	(3 <i>x</i> +)	y)(3x - y))	
					ļ

Example 2

Use special product patterns to find the product 26 • 34.

Example 3

Find the product.

5. (x + 10)(x - 10) 6. (2x + 1)(2x - 1)

7. (x + 3y)(x - 3y)

8. Describe how to use special product patterns to find 212.

Monitoring Progress 5-8

* 1	150	area	model
200	, - ,		

¥	dis cuss	Short	Cuts
_			

Stude	 M		

A combination of two genes determines the color of the dark patches of a border collie's coat. An offspring inherits one patch color gene from each parent. Each parent has two color genes, and the offspring has an equal chance of inheriting either one.

The gene *B* is for black patches, and the gene *r* is for red patches. Any gene combination with a *B* results in black patches. Suppose each parent has the same gene combination *Br*. The Punnett square shows the possible gene combinations of the offspring and the resulting patch colors.

Parent Br				
B BE	3 Br			
r Bi	i m			

Example 4

a. What percent of the possible gene combinations result in black patches?

75%

b. Show how you could use a polynomial to model the possible gene combinations.

 $= (.58 + .5r)^{3}$ $= .258^{2} + .58r + .25r^{3}$ 25% 80 80 80

Example 4a-b

- 9. Each of two dogs has one black gene (B) and one white gene (W). The Punnett square shows the possible gene combinations of an offspring and the resulting colors.
- a. What percent of the possible gene combinations result in black?

25%

b. Show how you could use a polynomial to model the possible gene combinations of the offspring.

(.5B + .5W) 2 = . 250° + .5BW + .25W2

Give Me Five: "How did today's lesson help you better understand multiplication of binomials?"	
	<u></u>
	
	,
Closure	