\qquad

6.3 Notetaking with Vocabulary (continued)

Parent Graphs for Logarithmic Functions

The graph of $f(x)=\log _{b} x$ is shown below for $b>1$ and for $0<b<1$.
Because $f(x)=\log _{b} x$ and $g(x)=b^{x}$ are inverse functions, the graph of $f(x)=\log _{b} x$ is the reflection of the graph of $g(x)=b^{x}$ in the line $y=x$.

Graph of $f(x)=\log _{b} x$ for $b>1 \quad$ Graph of $f(x)=\log _{b} x$ for $0<b<1$

Note that the y-axis is a vertical asymptote of the graph of $f(x)=\log _{b} x$. The domain of $f(x)=\log _{b} x$ is $x>0$, and the range is all real numbers.

Notes:

Extra Practice

In Exercises 1-4, rewrite the equation in exponential form.

1. $\log _{10} 1000=3$
2. $\log _{5} \frac{1}{25}=-2$
3. $\log _{10} 1=0$
4. $\log _{1 / 4} 64=-3$
\qquad
\qquad
6.3 Notetaking with Vocabulary (continued)

In Exercises 5-8, rewrite the equation in logarithmic form.
5. $12^{2}=144$
6. $20^{-1}=\frac{1}{20}$
7. $216^{1 / 3}=6$
8. $4^{0}=1$

In Exercises 9-12, evaluate the logarithm.
9. $\log _{4} 64$
10. $\log _{1 / 8} 1$
11. $\log _{2} \frac{1}{32}$
12. $\log _{1 / 25} \frac{1}{5}$

In Exercises 13 and 14, simplify the expression.
13. $13^{\log _{13} 6}$
14. $\ln e^{x^{3}}$

In Exercises 15 and 16, find the inverse of the function.
15. $y=15^{x}+10$
16. $y=\ln (2 x)-8$

In Exercises 17 and 18, graph the function. Determine the asymptote of the function.
17. $y=\log _{2}(x+1)$

18. $y=\log _{1 / 2} x-4$

