
## 6.3 Notetaking with Vocabulary (continued)

#### Parent Graphs for Logarithmic Functions

The graph of  $f(x) = \log_b x$  is shown below for b > 1 and for 0 < b < 1. Because  $f(x) = \log_b x$  and  $g(x) = b^x$  are inverse functions, the graph of  $f(x) = \log_b x$  is the reflection of the graph of  $g(x) = b^x$  in the line y = x.

Graph of  $f(x) = \log_b x$  for b > 1 Graph of  $f(x) = \log_b x$  for 0 < b < 1



Note that the y-axis is a vertical asymptote of the graph of  $f(x) = \log_b x$ . The domain of  $f(x) = \log_b x$  is x > 0, and the range is all real numbers.

#### Notes:

# **Extra Practice**

In Exercises 1–4, rewrite the equation in exponential form.

**1.**  $\log_{10} 1000 = 3$  **2.**  $\log_5 \frac{1}{25} = -2$  **3.**  $\log_{10} 1 = 0$  **4.**  $\log_{1/4} 64 = -3$ 

## 6.3 Notetaking with Vocabulary (continued)

In Exercises 5–8, rewrite the equation in logarithmic form.

**5.** 
$$12^2 = 144$$
 **6.**  $20^{-1} = \frac{1}{20}$  **7.**  $216^{1/3} = 6$  **8.**  $4^0 = 1$ 

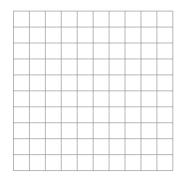
#### In Exercises 9–12, evaluate the logarithm.

**9.**  $\log_4 64$  **10.**  $\log_{1/8} 1$  **11.**  $\log_2 \frac{1}{32}$  **12.**  $\log_{1/25} \frac{1}{5}$ 

#### In Exercises 13 and 14, simplify the expression.

**13.**  $13^{\log_{13} 6}$  **14.**  $\ln e^{x^3}$ 

#### In Exercises 15 and 16, find the inverse of the function.


**15.**  $y = 15^{x} + 10$  **16.**  $y = \ln(2x) - 8$ 

# In Exercises 17 and 18, graph the function. Determine the asymptote of the function.

### **17.** $y = \log_2(x+1)$



**18.**  $y = \log_{1/2} x - 4$ 

