6.1 Practice A

In Exercises 1–3, evaluate the expression for (a) x = -2 and (b) x = 3.

1. 3^x **2.** $5 \cdot 2^x$ **3.** $3 + 2^x$

In Exercises 4–9, tell whether the function represents *exponential growth* or *exponential decay*. Then graph the function.

4.
$$y = 5^x$$
 5. $y = 3^x$ **6.** $y = \left(\frac{1}{5}\right)^x$

7.
$$y = \left(\frac{3}{2}\right)^x$$
 8. $y = (1.6)^x$ **9.** $y = (0.5)^x$

In Exercises 10 and 11, use the graph of $f(x) = b^x$ to identify the value of the base b.

- **12.** The value of a rare coin y (in dollars) can be approximated by the model $y = 0.25(1.06)^t$, where t is the number of years since the coin was minted.
 - **a.** Tell whether the model represents exponential growth or exponential decay.
 - **b.** Identify the annual percent increase or decrease in the value of the coin.
 - **c.** What was the original value of the coin?
 - d. Estimate when the value of the coin will be \$0.60.

In Exercises 13–15, rewrite the function in the form $y = a(1 + r)^t$ or $y = a(1 - r)^t$. Then state the growth or decay rate.

- **13.** $y = a(3)^{t/2}$ **14.** $y = a(5)^{t/8}$ **15.** $y = a(0.4)^{3t}$
- **16.** You deposit \$3000 into a bank account that pays 1.25% annual interest, compounded semi-annually. How much interest does the account earn after 4 years?