5.5 Practice A

In Exercises 1 and 2, find (f + g)(x) and (f - g)(x) and state the domain of each. Then evaluate f + g and f - g for the given value of x.

1.
$$f(x) = -3\sqrt[4]{x}$$
; $g(x) = 15\sqrt[4]{x}$; $x = 81$

2.
$$f(x) = 9x + 2x^2$$
; $g(x) = x^2 - 3x + 7$; $x = 1$

In Exercises 3–5, find (fg)(x) and (fg)(x) and state the domain of each.

Then evaluate fg and $\frac{f}{g}$ for the given value of x.

3.
$$f(x) = x^2$$
; $g(x) = 2\sqrt{x}$; $x = 9$

4.
$$f(x) = 10x^3$$
; $g(x) = 4x^{5/3}$; $x = 8$

5.
$$f(x) = 4x^{2/3}$$
; $g(x) = 2x^{1/3}$; $x = -27$

In Exercises 6 and 7, use a graphing calculator to evaluate (f + g)(x), (f - g)(x),

(fg)(x), and $(\frac{f}{g})(x)$ when x = 5. Round your answers to two decimal places.

6.
$$f(x) = 5x^3$$
; $g(x) = 20x^{1/4}$

7.
$$f(x) = 4x^{2/3}$$
; $g(x) = 16x^{4/3}$

8. Describe and correct the error in stating the domain.

$$f(x) = 4x^{1/2} + 2$$
 and $g(x) = -4x^{1/2}$

The domain of (f + g)(x) is all real numbers.

9. The growth of mold in Specimen A can be modeled by $A(t) = \frac{5}{6}t^{2/3}$. The growth of mold in Specimen B can be modeled by $B(t) = \frac{1}{3}t^{2/3}$.

a. Find
$$(A - B)(t)$$
.

b. Explain what the function (A - B)(t) represents.