Practice A

In Exercises 1-6, graph the function. Identify the domain and range of the function.

1.
$$g(x) = \sqrt{x} + 4$$

1.
$$g(x) = \sqrt{x} + 4$$
 2. $h(x) = \sqrt{x} - 2$ **3.** $f(x) = -\sqrt[3]{4x}$

3.
$$f(x) = -\sqrt[3]{4x}$$

4.
$$h(x) = \sqrt[3]{-2x}$$

5.
$$f(x) = \frac{1}{3}\sqrt{x-2}$$

4.
$$h(x) = \sqrt[3]{-2x}$$
 5. $f(x) = \frac{1}{3}\sqrt{x-2}$ **6.** $g(x) = \frac{1}{4}\sqrt{x+5}$

In Exercises 7–12, describe the transformation of f represented by g. Then graph each function.

7.
$$f(x) = \sqrt{x}$$
; $g(x) = \sqrt{x-1} + 4$ **8.** $f(x) = \sqrt{x}$; $g(x) = 3\sqrt{x+2}$

8.
$$f(x) = \sqrt{x}$$
; $g(x) = 3\sqrt{x+2}$

9.
$$f(x) = \sqrt[3]{x}$$
; $g(x) = -2\sqrt[3]{x}$

10.
$$f(x) = \sqrt[3]{x}$$
; $g(x) = \sqrt[3]{x-1} + 3$

11.
$$f(x) = x^{1/2}$$
; $g(x) = 3(-x)^{1/2}$

12.
$$f(x) = x^{1/3}$$
; $g(x) = -\frac{1}{3}x^{1/3}$

In Exercises 13-15, use a graphing calculator to graph the function. Then identify the domain and range of the function.

13.
$$f(x) = \sqrt{x^2 - x}$$

14.
$$g(x) = \sqrt[3]{x^2 - x}$$

13.
$$f(x) = \sqrt{x^2 - x}$$
 14. $g(x) = \sqrt[3]{x^2 - x}$ **15.** $h(x) = \sqrt[3]{2x^2 + 3x}$

In Exercises 16 and 17, write a rule for g described by the transformations of the graph of f.

- **16.** Let g be a vertical shrink by a factor of $\frac{1}{3}$, followed by a translation 3 units right of the graph of $f(x) = \sqrt{x+5}$.
- 17. Let g be a reflection in the x-axis, followed by a translation 2 units down of the graph of $f(x) = 5\sqrt{x} + 3$.

In Exercises 18 and 19, use a graphing calculator to graph the equation of the parabola. Identify the vertex and the direction that the parabola opens.

18.
$$\frac{1}{2}y^2 = x$$

19.
$$-3y^2 = x + 6$$

In Exercises 20 and 21, use a graphing calculator to graph the equation of the circle. Identify the radius and the intercepts.

20.
$$x^2 + y^2 = 16$$

21.
$$25 - y^2 = x^2$$