5.1

# nth Roots and Rational Exponents

For use with Exploration 5.1

**Essential Question** How can you use a rational exponent to represent a power involving a radical?

### **EXPLORATION:** Exploring the Definition of a Rational Exponent

#### Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use a calculator to show that each statement is true.

**a.**  $\sqrt{9} = 9^{1/2}$  **b.**  $\sqrt{2} = 2^{1/2}$  **c.**  $\sqrt[3]{8} = 8^{1/3}$  **d.**  $\sqrt[3]{3} = 3^{1/3}$  **e.**  $\sqrt[4]{16} = 16^{1/4}$ **f.**  $\sqrt[4]{12} = 12^{1/4}$ 

### **EXPLORATION:** Writing Expressions in Rational Exponent Form

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

**Work with a partner.** Use the definition of a rational exponent and the properties of exponents to write each expression as a base with a single rational exponent. Then use a calculator to evaluate each expression. Round your answer to two decimal places.

Sample



Copyright © Big Ideas Learning, LLC All rights reserved.

3

### **EXPLORATION:** Writing Expressions in Radical Form

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

**Work with a partner.** Use the properties of exponents and the definition of a rational exponent to write each expression as a radical raised to an exponent. Then use a calculator to evaluate each expression. Round your answer to two decimal places.

Sample 
$$5^{2/3} = (5^{1/3})^2 = (\sqrt[3]{5})^2 \approx 2.92$$
  
a.  $8^{2/3}$ 
b.  $6^{5/2}$ 
c.  $12^{3/4}$   
d.  $10^{3/2}$ 
e.  $16^{3/2}$ 
f.  $20^{6/5}$ 

## Communicate Your Answer

4. How can you use a rational exponent to represent a power involving a radical?

5. Evaluate each expression *without* using a calculator. Explain your reasoning.

a.  $4^{3/2}$  b.  $32^{4/5}$  c.  $625^{3/4}$ d.  $49^{3/2}$  e.  $125^{4/3}$  f.  $100^{6/3}$ 

# **5.1** Notetaking with Vocabulary For use after Lesson 5.1

In your own words, write the meaning of each vocabulary term. nth root of a

index of a radical

## Core Concepts

### Real nth roots of a

Let *n* be an integer (n > 1) and let *a* be a real number.

| <i>n</i> is an even integer.                                        | <i>n</i> is an odd integer.                                |
|---------------------------------------------------------------------|------------------------------------------------------------|
| a < 0 No real <i>n</i> th roots                                     | $a < 0$ One real <i>n</i> th root: $\sqrt[n]{a} = a^{1/n}$ |
| $a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = 0$                | $a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = 0$       |
| $a > 0$ Two real <i>n</i> th roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$ | $a > 0$ One real <i>n</i> th root: $\sqrt[n]{a} = a^{1/n}$ |
| Notes:                                                              |                                                            |

# Copyright © Big Ideas Learning, LLC All rights reserved.

## 5.1 Notetaking with Vocabulary (continued)

### **Rational Exponents**

Let  $a^{1/n}$  be an *n*th root of *a*, and let *m* be a positive integer.

$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$
$$a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$$

Notes:

## **Extra Practice**

In Exercises 1–3, find the indicated real *n*th root(s) of *a*.

**1.** n = 3, a = -125 **2.** n = 2, a = -400 **3.** n = 6, a = 64

In Exercises 4–11, evaluate the expression without using a calculator.

**4.**  $64^{1/2}$  **5.**  $(-27)^{1/3}$  **6.**  $32^{7/5}$  **7.**  $49^{-3/2}$ **8.**  $(-32)^{3/5}$  **9.**  $1000^{-2/3}$  **10.**  $81^{3/4}$  **11.**  $625^{1/4}$ 

## 5.1 Notetaking with Vocabulary (continued)

In Exercises 12–15, match the equivalent expressions. Explain your reasoning.

**12.**  $(\sqrt{a})^3$  **A.**  $a^{-1/3}$  **13.**  $-\sqrt[3]{a}$  **B.**  $a^{2/3}$ **C.**  $a^{3/2}$ 

**15.** 
$$\frac{1}{\sqrt[3]{a}}$$
 **D.**  $-a^{1/3}$ 

In Exercises 16–19, find the real solution(s) of the equation. Round your answer to two decimal places when appropriate.

**16.** 
$$6x^3 = -6$$
 **17.**  $2(x+5)^4 = 128$ 

**18.** 
$$x^5 - 32 = -64$$
 **19.**  $-\frac{1}{10}x^3 + 100 = 0$ 

20. The volume of a cube is 1728 cubic inches. What are the dimensions of the cube?