\qquad

nth Roots and Rational Exponents

For use with Exploration 5.1

Essential Question How can you use a rational exponent to represent a

 power involving a radical?
1 EXPLORATION: Exploring the Definition of a Rational Exponent

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use a calculator to show that each statement is true.
a. $\sqrt{9}=9^{1 / 2}$
b. $\sqrt{2}=2^{1 / 2}$
c. $\sqrt[3]{8}=8^{1 / 3}$
d. $\sqrt[3]{3}=3^{1 / 3}$
e. $\sqrt[4]{16}=16^{1 / 4}$
f. $\sqrt[4]{12}=12^{1 / 4}$

2 EXPLORATION: Writing Expressions in Rational Exponent Form

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use the definition of a rational exponent and the properties of exponents to write each expression as a base with a single rational exponent. Then use a calculator to evaluate each expression. Round your answer to two decimal places.

Sample

$$
\begin{aligned}
(\sqrt[3]{4})^{2} & =\left(4^{1 / 3}\right)^{2} \\
& =4^{2 / 3} \\
& \approx 2.52
\end{aligned}
$$

a. $(\sqrt{5})^{3}$
b. $(\sqrt[4]{4})^{2}$
c. $(\sqrt[3]{9})^{2}$
d. $(\sqrt[5]{10})^{4}$
e. $(\sqrt{15})^{3}$
f. $(\sqrt[3]{27})^{4}$
\qquad
5.1 nth Roots and Rational Exponents (continued)

3 EXPLORATION: Writing Expressions in Radical Form
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use the properties of exponents and the definition of a rational exponent to write each expression as a radical raised to an exponent. Then use a calculator to evaluate each expression. Round your answer to two decimal places.

Sample $5^{2 / 3}=\left(5^{1 / 3}\right)^{2}=(\sqrt[3]{5})^{2} \approx 2.92$
a. $8^{2 / 3}$
b. $6^{5 / 2}$
c. $12^{3 / 4}$
d. $10^{3 / 2}$
e. $16^{3 / 2}$
f. $20^{6 / 5}$

Communicate Your Answer

4. How can you use a rational exponent to represent a power involving a radical?
5. Evaluate each expression without using a calculator. Explain your reasoning.
a. $4^{3 / 2}$
b. $32^{4 / 5}$
c. $625^{3 / 4}$
d. $49^{3 / 2}$
e. $125^{4 / 3}$
f. $100^{6 / 3}$
\qquad

In your own words, write the meaning of each vocabulary term.
nth root of a
index of a radical

Core Concepts

Real \boldsymbol{n} th roots of \boldsymbol{a}

Let n be an integer $(n>1)$ and let a be a real number.
n is an even integer.
$\boldsymbol{a}<\mathbf{0}$ No real nth roots
$\boldsymbol{a}=\mathbf{0}$ One real nth root: $\sqrt[n]{0}=0$
$\boldsymbol{a}>\mathbf{0}$ Two real nth roots: $\pm \sqrt[n]{a}= \pm a^{1 / n}$
n is an odd integer.
$\boldsymbol{a}<\mathbf{0}$ One real nth root: $\sqrt[n]{a}=a^{1 / n}$
$\boldsymbol{a}=\mathbf{0}$ One real nth root: $\sqrt[n]{0}=0$
$\boldsymbol{a}>\mathbf{0}$ One real nth root: $\sqrt[n]{a}=a^{1 / n}$

Notes:
\qquad
\qquad

5.1 Notetaking with Vocabulary (continued)

Rational Exponents

Let $a^{1 / n}$ be an nth root of a, and let m be a positive integer.

$$
\begin{aligned}
& a^{m / n}=\left(a^{1 / n}\right)^{m}=(\sqrt[n]{a})^{m} \\
& a^{-m / n}=\frac{1}{a^{m / n}}=\frac{1}{\left(a^{1 / n}\right)^{m}}=\frac{1}{(\sqrt[n]{a})^{m}}, a \neq 0
\end{aligned}
$$

Notes:

Extra Practice

In Exercises 1-3, find the indicated real $\boldsymbol{n t h}$ root(s) of \boldsymbol{a}.

1. $n=3, a=-125$
2. $n=2, a=-400$
3. $n=6, a=64$

In Exercises 4-11, evaluate the expression without using a calculator.
4. $64^{1 / 2}$
5. $(-27)^{1 / 3}$
6. $32^{7 / 5}$
7. $49^{-3 / 2}$
8. $(-32)^{3 / 5}$
9. $1000^{-2 / 3}$
10. $81^{3 / 4}$
11. $625^{1 / 4}$
\qquad

5.1 Notetaking with Vocabulary (continued)

In Exercises 12-15, match the equivalent expressions. Explain your reasoning.
12. $(\sqrt{a})^{3}$
A. $a^{-1 / 3}$
13. $-\sqrt[3]{a}$
B. $a^{2 / 3}$
14. $(\sqrt[3]{a})^{2}$
C. $a^{3 / 2}$
15. $\frac{1}{\sqrt[3]{a}}$
D. $-a^{1 / 3}$

In Exercises 16-19, find the real solution(s) of the equation. Round your answer to two decimal places when appropriate.
16. $6 x^{3}=-6$
17. $2(x+5)^{4}=128$
18. $x^{5}-32=-64$
19. $-\frac{1}{10} x^{3}+100=0$
20. The volume of a cube is 1728 cubic inches. What are the dimensions of the cube?

