\qquad

5.1

Practice A

In Exercises 1-3, find the indicated real $\boldsymbol{n t h}$ root(s) of \boldsymbol{a}.

1. $n=3, a=125$
2. $n=2, a=49$
3. $n=4, a=81$

In Exercises 4-9, evaluate the expression without using a calculator.
4. $27^{1 / 3}$
5. $16^{1 / 4}$
6. $4^{3 / 2}$
7. $625^{3 / 4}$
8. $(-1000)^{2 / 3}$
9. $32^{1 / 5}$

In Exercises 10-15, evaluate the expression using a calculator. Round your answer to two decimal places when appropriate.
10. $\sqrt[5]{16,807}$
11. $\sqrt[6]{15,625}$
12. $12^{-1 / 3}$
13. $92^{1 / 5}$
14. $6561^{5 / 4}$
15. $113^{-3 / 4}$

In Exercises 16 and 17, find the radius of the figure with the given volume.
16. $V=1726$ in. ${ }^{3}$
17. $V=734 \mathrm{~m}^{3}$

In Exercises 18-23, find the real solution(s) of the equation. Round your answer to two decimal places when appropriate.
18. $x^{4}=256$
19. $3 x^{3}=375$
20. $(x-6)^{2}=40$
21. $(x+7)^{3}=1000$
22. $x^{5}=-112$
23. $9 x^{4}=54$
24. When the average price of an item increases from p_{1} to p_{2} over a period of n years, the price p_{2} is given by $p_{2}=p_{1}(r+1)^{n}$, where r is the annual rate of inflation (in decimal form). Find the annual rate of inflation when the price of a loaf of bread was $\$ 1.19$ in 1970 and $\$ 3.29$ in 2010.

