5.1 Practice A

In Exercises 1–3, find the indicated real *n*th root(s) of *a*.

1. n = 3, a = 125 **2.** n = 2, a = 49 **3.** n = 4, a = 81

In Exercises 4–9, evaluate the expression without using a calculator.

4. $27^{1/3}$ **5.** $16^{1/4}$ **6.** $4^{3/2}$ **7.** $625^{3/4}$ **8.** $(-1000)^{2/3}$ **9.** $32^{1/5}$

In Exercises 10–15, evaluate the expression using a calculator. Round your answer to two decimal places when appropriate.

10. $\sqrt[5]{16,807}$ 11. $\sqrt[6]{15,625}$ 12. $12^{-1/3}$ 13. $92^{1/5}$ 14. $6561^{5/4}$ 15. $113^{-3/4}$

In Exercises 16 and 17, find the radius of the figure with the given volume.

16. $V = 1726 \text{ in.}^3$ **17.** $V = 734 \text{ m}^3$ **17.** $V = 734 \text{ m}^3$

In Exercises 18–23, find the real solution(s) of the equation. Round your answer to two decimal places when appropriate.

18.	$x^4 = 256$	19.	$3x^3 = 375$	20.	$\left(x-6\right)^2 = 40$
21.	$(x + 7)^3 = 1000$	22.	$x^5 = -112$	23.	$9x^4 = 54$

24. When the average price of an item increases from p_1 to p_2 over a period of n years, the price p_2 is given by $p_2 = p_1(r+1)^n$, where r is the annual rate of inflation (in decimal form). Find the annual rate of inflation when the price of a loaf of bread was \$1.19 in 1970 and \$3.29 in 2010.