\qquad
\qquad

4.5
 Practice A

In Exercises 1-6, solve the equation.

1. $q^{3}-q^{2}-30 q=0$
2. $k^{3}+6 k^{2}+9 k=0$
3. $3 y^{4}-6 y^{3}=-3 y^{2}$
4. $n^{3}+2 n^{2}-9 n-18=0$
5. $3 p^{3}=21 p$
6. $8 u^{6}=16 u^{4}$

In Exercises 7-10, find the zeros of the function. Then sketch a graph of

 the function.7. $f(x)=x^{4}+x^{3}-12 x^{2}$
8. $g(x)=x^{4}-8 x^{2}+16$
9. $h(x)=x^{5}-2 x^{4}-15 x^{3}$
10. $f(x)=-3 x^{3}-15 x^{2}-12 x$
11. According to the Rational Root Theorem, which is not a possible solution of the equation $3 x^{4}-6 x^{3}+2 x+4=0$?
A. 4
B. $\frac{1}{3}$
C. -3
D. $-\frac{2}{3}$
12. Describe and correct the error in listing the possible rational zeros of the function.

$$
\chi f(x)=x^{3}+3 x^{2}-8 x-18
$$

Possible zeros: $\pm 2, \pm 3, \pm 6, \pm 9$

In Exercises 13 and 14, find all the real solutions of the equation.
13. $x^{4}-8 x^{2}-9=0$
14. $x^{3}+2 x^{2}-5 x-6=0$
15. Write a third or fourth degree polynomial function that has zeros at $\pm \frac{3}{2}$. Justify your answer.
16. Determine the value of k for each equation so that the given x-value is a solution.
a. $x^{3}+2 x^{2}-9 x+k=0 ; x=3$
b. $x^{3}-3 x^{2}+k x-12=0 ; x=-4$

