4.4 Notetaking with Vocabulary (continued)

The Factor Theorem

A polynomial f(x) has a factor x - k if and only if f(k) = 0.

Notes:

Extra Practice

In Exercises 1–14, factor the polynomial completely.

1.
$$20x^3 - 220x^2 + 600x$$

2.
$$m^5 - 81m$$

3.
$$27a^3 + 8b^3$$

4.
$$5t^6 + 2t^5 - 5t^4 - 2t^3$$

5.
$$y^4 - 13y^2 - 48$$

6.
$$5p^3 + 5p - 5p^2 - 5$$

7.
$$810k^4 - 160$$

8.
$$a^5 + a^3 - a^2 - 1$$

4.4 Notetaking with Vocabulary (continued)

9.
$$2x^6 - 8x^5 - 42x^4$$

10.
$$5z^3 + 5z^2 - 6z - 6$$

11.
$$12x^2 - 22x - 20$$

12.
$$3m^2 - 48m^6$$

13.
$$4x^3 - 4x^2 + x$$

14.
$$5m^4 - 70m^3 + 245m^2$$

In Exercises 15–17, show that the binomial is a factor of the polynomial. Then factor the function completely.

15.
$$f(x) = x^3 - 13x - 12; x + 1$$

16.
$$f(x) = 6x^3 + 8x^2 - 34x - 12; x - 2$$

17.
$$f(x) = 2x^4 - 12x^3 + 6x^2 + 20x$$
; $x - 5$