\qquad
\qquad
4.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-4, decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1. $f(x)=2 x^{2}-3 x^{4}+6 x+1$
2. $m(x)=-\frac{3}{7} x^{3}+\frac{7}{x}-3$
3. $g(x)=\sqrt{15} x+\sqrt{5}$
4. $p(x)=-2 \sqrt{3}+3 x-2 x^{2}$

In Exercises 5 and 6, evaluate the function for the given value of \boldsymbol{x}.
5. $h(x)=-x^{3}-2 x^{2}-3 x+4 ; x=2$
6. $g(x)=x^{4}-32 x^{2}+256 ; x=-4$

In Exercises 7 and 8, describe the end behavior of the graph of the function.
7. $f(x)=-3 x^{6}+4 x^{2}-3 x+6$
8. $f(x)=\frac{4}{5} x+6 x+3 x^{5}-3 x^{3}-2$
9. Describe the degree and leading coefficient of the polynomial function using the graph.

\qquad
\qquad

4.1 Notetaking with Vocabulary (continued)

In Exercises 10 and 11, graph the polynomial function.

10. $p(x)=16-x^{4}$

11. $g(x)=x^{2}+3 x^{5}-x$

12. Sketch a graph of the polynomial function f if
f is increasing when $x<-1$ and $0<x<1$,
f is decreasing when $-1<x<0$ and $x>1$, and $f(x)<0$ for all real numbers.

Describe the degree and leading coefficient of the function f.

13. The number of students S (in thousands) who graduate in four years from a university can be modeled by the function $S(t)=-\frac{1}{4} t^{3}+t^{2}+23$, where t is the number of years since 2010 .
a. Use a graphing calculator to graph the function for the interval $0 \leq t \leq 5$. Describe the behavior of the graph on this interval.
b. What is the average rate of change in the number of four-year graduates from 2010 to 2015 ?
c. Do you think this model can be used for years before 2010 or after 2015? Explain your reasoning.

