\qquad
\qquad

3.6
 Practice A

In Exercises 1-4, graph the inequality.

1. $y>x^{2}$
2. $y \leq-3 x^{2}$
3. $y \geq x^{2}-5$
4. $y<x^{2}-3 x$

In Exercises 5 and 6, use the graph to write an inequality in terms of $f(x)$ so point P is a solution.
5.

6.

In Exercises 7 and 8, graph the system of quadratic inequalities.
7. $y \leq-2 x^{2}$
8. $y<4 x^{2}$
$y>x^{2}-3$

$$
y<2 x^{2}-4
$$

In Exercises 9-12, solve the inequality algebraically.
9. $9 x^{2}>16$
10. $x^{2}-8 x+7 \geq 0$
11. $x^{2}+10 x \leq-21$
12. $2 x^{2}-11 x<-9$

In Exercises 13-16, solve the inequality by graphing.
13. $x^{2}-2 x+2>0$
14. $x^{2}+5 x-3 \leq 0$
15. $x^{2}+6 x \leq-5$
16. $x^{2}+4 x>-1$
17. An oceanfront lot has a perimeter of 250 feet and an area of at least 2500 square feet.
a. Write an inequality describing this situation.
b. Describe the possible widths of the oceanfront lot.

