3.6

Practice A

In Exercises 1-4, graph the inequality.

1.
$$y > x^2$$

2.
$$y \le -3x^2$$

3.
$$y \ge x^2 - 5$$

4.
$$v < x^2 - 3x$$

In Exercises 5 and 6, use the graph to write an inequality in terms of f(x) so point P is a solution.

5.

6.

In Exercises 7 and 8, graph the system of quadratic inequalities.

7.
$$y \le -2x^2$$

$$y > x^2 - 3$$

8.
$$y < 4x^2$$

$$y < 2x^2 - 4$$

In Exercises 9–12, solve the inequality algebraically.

9.
$$9x^2 > 16$$

10.
$$x^2 - 8x + 7 \ge 0$$

11.
$$x^2 + 10x \le -21$$

12.
$$2x^2 - 11x < -9$$

In Exercises 13–16, solve the inequality by graphing.

13.
$$x^2 - 2x + 2 > 0$$

14.
$$x^2 + 5x - 3 \le 0$$

15.
$$x^2 + 6x \le -5$$

16.
$$x^2 + 4x > -1$$

- **17.** An oceanfront lot has a perimeter of 250 feet and an area of at least 2500 square feet.
 - **a.** Write an inequality describing this situation.
 - **b.** Describe the possible widths of the oceanfront lot.